精英家教网 > 初中数学 > 题目详情

【题目】“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.

1)求购进一件甲种礼品、一件乙种礼品各需多少元;

2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?

【答案】(1)购进一件甲种礼品需要50元,一件乙种礼品需70元;(2)最多可购进20件甲种礼品.

【解析】

1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元.根据题意得:,解方程可得;

2)设购进甲m件,则购进乙件.根据题意得:,解不等式可得.

解:(1)设购进一件甲种礼品需x元,则一件乙种礼品需(x+20)元.

根据题意得:

解得:x=50

经检验,x=50是原方程的解,且符合题意.

=70元.

答:购进一件甲种礼品需要50元,一件乙种礼品需70元.

2)设购进甲m件,则购进乙件.

根据题意得:

解得:

答:最多可购进20件甲种礼品.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形.RtABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).

(1)先将RtABC向右平移5个单位,再向下平移1个单位后得到RtA1B1C1.试在图中画出图形RtA1B1C1,并写出A1的坐标;

(2)将RtA1B1C1绕点A1顺时针旋转90°后得到RtA2B2C2,试在图中画出图形RtA2B2C2.并计算RtA1B1C1在上述旋转过程中C1所经过的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,CBG=A,CD为直径,OCAB相交于点E,过点EEFBC,垂足为F,延长CDGB的延长线于点P,连接BD.

(1)求证:PG与⊙O相切;

(2)若=,求的值;

(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线l1y1a(x+1)2+2l2y2=﹣(x2)21交于点B(1,﹣2),且分别与y轴交于点DE.过点Bx轴的平行线,交抛物线于点AC,则以下结论:

①无论x取何值,y2总是负数;

l2可由l1向右平移3个单位,再向下平移3个单位得到;

③当﹣3x1时,随着x的增大,y1y2的值先增大后减小;

④四边形AECD为正方形.

其中正确的是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义:对角线互相垂直的四边形叫做垂美四边形.

1)如图1,垂美四边形ABCD的对角线ACBD交于O.求证:AB2+CD2AD2+BC2

2)如图2,分别以RtACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BECGGE

①求证:四边形BCGE是垂美四边形;

②若AC4AB5,求GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某数学“综合与实践”小组的同学把“测量大桥斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.

项目

内容

课题

测量斜拉索顶端到桥面的距离

测量示意图

说明:大桥两侧一组斜拉索ACBC相交于点C,分别与桥面交于AB两点,且点ABC在同一竖直平面内.

测量数据

A的度数

B的度数

AB的长度

45°

30°

240

请帮助该小组根据上表中的测量数据,求斜拉索顶端点CAB的距离.(结果精确到0.1米)(参考数据:1.4141.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2016年交易额为500亿元,2018年交易额为720亿元。

(1)2016年至2018年“双十一”交易额的年平均增长率是多少?

(2)若保持原来的增长率,试计算2019年该平台“双十一”的交易额将达到多少亿元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要建一个长方形养鸡场,养鸡场的一边靠墙(墙长25米),另三边用竹篱笆围成,竹篱笆的长为40米,若要围成的养鸡场的面积为180平方米,求养鸡场的长、宽各为多少米,设与墙平行的一边长为米.

1)填空:(用含的代数式表示)另一边长为 米;

2)列出方程,并求出问题的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y的图象的一个交点为A(1n)

(1)求反比例函数y的表达式.

(2)若两函数图象的另一交点为B,直接写出B的坐标.

查看答案和解析>>

同步练习册答案