【题目】阅读材料,解决问题.
小聪在探索三角形中位线性质定理证明的过程中,得到了如下启示:一条线段经过另一线段的中点,则延长前者,并且长度相等,就能构造全等三角形.如图,D是△ABC的AC边的中点,E为AB上任一点,延长ED至F,使DF=DE,连接CF,则可得△CFD≌△AED,从而把△ABC剪拼成面积相等的四边形BCFE.你能从小聪的反思中得到启示吗?
(1)如图1,已知△ABC,试着剪一刀,使得到的两块图形能拼成平行四边形.
①把剪切线和拼成的平行四边形画在图1上,并指出剪切线应符合的条件.
②思考并回答:要使上述剪拼得到的平行四边形成为矩形,△ABC的边或角应符合什么条件?菱形呢?正方形呢?(直接写出用符号表示的条件)
(2)如图2,已知锐角△ABC,试着剪两刀,使得到的三块图形能拼成矩形,把剪切线和拼成的矩形画在图2上,并指出剪切线应符合的条件.
【答案】(1)①见解析;②拼成矩形:∠B=90°;拼成菱形:AB=2BC;拼成正方形:∠B=90°且AB=2BC;(2)见解析
【解析】
(1)①分别取AB,AC的中点E,F,延长EF至点D,使EF=FD,连接CD,因为两组边分别对应相等所以四边形BCDE是平行四边形,所以沿着EF剪出的两个图形能拼成平行四边形;
②当∠B=90°时,可根据有一个角是直角的平行四边形是矩形即可得到结论;
当AB=2BC时,根据有一组邻边相等的平行四边形是菱形可得到结论;
当∠B=90°且AB=2BC时,根据有一个角是直角的菱形是正方形即可得到结论.
(2)取△ABC的中位线EF,按第一问的方法先将其拼成一个平行四边形,再过点E作BC边的垂线EG,顺着EG剪下然后拼到点C处即可得到一个矩形.
解:(1)①如图:剪切线EF,E.F分别AB、AC的中点.
②如图,△ABC的边或角应符合的条件:
拼成矩形:∠B=90°
拼成菱形:AB=2BC
拼成正方形:∠B=90°且AB=2BC.
(2)如图,
剪切线应符合的条件:剪切线EF是中位线、EG⊥BC(AH⊥EF).
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=a,AD=b,点P是对角线BD上的一个动点(点P不与B、D重合),连接AP并延长交射线BC于点Q,
(1)当AP⊥BD时,求△ABQ的面积(用含a、b的代数式表示).
(2)若点M为AD边的中点,连接MP交BC于点N,证明:点N也为线段BQ的中点.
(3)如图,当为何值时,△ADP与△BPQ的面积之和最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画,P是上一动点,且P在第一象限内,过点P作的切线与x轴相交于点A,与y轴相交于点B.在上存在点Q,使得以Q、O、A、P为顶点的四边形是平行四边形,请写出Q点的坐标_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)当销售单价为多少元时,销售这种童装每月可获利1800元?
(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针方向旋转 90°,得到线段 AB ,则点 B 的对应点 B′的坐标是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①abc<0;②4ac<b2;③方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;④3a+c>0;⑤当y≥0时,x的取值范围是﹣1≤x≤3.其中结论正确的个数是( )
A. 1个B. 2个C. 3D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂生产A,B两种产品,其单价随市场变化而做相应调整,营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图: A,B产品单价变化统计表
第一次 | 第二次 | 第三次 | |
A产品单价 (元/件) | 6 | 5.2 | 6.5 |
B产品单价 (元/件) | 3.5 | 4 | 3 |
并求得了A产品三次单价的平均数和方差:;
(1)补全图中B产品单价变化的折线图,B产品第三次的单价比上一次的单价降低了 %;
(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0)使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化.某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.
(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;
(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?
(3)若k=3,a=﹣,则喷出的抛物线水线能否达到岸边?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com