【题目】“如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”
(1)探究发现:如图②,若m=n,点E在线段AC上,则= ;
(2)数学思考:
①如图3,若点E在线段AC上,则= (用含m,n的代数式表示);
②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;
(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.
【答案】(1)1;(2)①;②成立,理由见解析;(3)CE=2或CE=
【解析】
(1)先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可.
(2)方法和(1)一样,先用等量代换判断出∠ADE=∠CDF,∠A=∠DCB,得到△ADE∽△CDF,再判断出△ADC∽△CDB即可.
(3)由(2)的结论得出△ADE∽△CDF,判断出CF=2AE,求出EF,再利用勾股定理,分三种情形分别求解即可.
(1)当m=n时,即:BC=AC,
∵∠ACB=90°,
∴∠A+∠ABC=90°,
∵CD⊥AB,
∴∠DCB+∠ABC=90°,
∴∠A=∠DCB,
∵∠FDE=∠ADC=90°,
∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,
即∠ADE=∠CDF,
∴△ADE∽△CDF,
∴=,
∵∠A=∠DCB,∠ADC=∠BDC=90°,
∴△ADC∽△CDB,
∴==1,
∴=1,
故答案为1.
(2)①∵∠ACB=90°,
∴∠A+∠ABC=90°,
∵CD⊥AB,
∴∠DCB+∠ABC=90°,
∴∠A=∠DCB,
∵∠FDE=∠ADC=90°,
∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,
即∠ADE=∠CDF,
∴△ADE∽△CDF,
∴=,
∵∠A=∠DCB,∠ADC=∠BDC=90°,
∴△ADC∽△CDB,
∴==,
∴=,
故答案为.
②成立.如图,
∵∠ACB=90°,
∴∠A+∠ABC=90°,
又∵CD⊥AB,
∴∠DCB+∠ABC=90°,
∴∠A=∠DCB,
∵∠FDE=∠ADC=90°,
∴∠FDE+∠CDE=∠ADC+∠CDE,
即∠ADE=∠CDF,
∴△ADE∽△CDF,
∴=,
∵∠A=∠DCB,∠ADC=∠BDC=90°,
∴△ADC∽△CDB,
∴==,
∴=.
(3)由(2)有,△ADE∽△CDF,
∵==,
∴===,
∴CF=2AE,
在Rt△DEF中,DE=2,DF=4,
∴EF===2,
①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,
根据勾股定理得,CE2+CF2=EF2,
∴CE2+[2(﹣CE)]2=40
∴CE=2,或CE=﹣(舍去)
而AC=<CE,
∴此种情况不存在,
②当E在AC延长线上时,
在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,
根据勾股定理得,CE2+CF2=EF2,
∴CE2+[2(+CE)]2=40,
∴CE=,或CE=﹣2(舍),
③如图4﹣1,当点E在CA延长线上时,
CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,
根据勾股定理得,CE2+CF2=EF2,
∴CE2+[2(CE﹣)]2=40,
∴CE=2,或CE=﹣(舍)
即:CE=2或CE=.
科目:初中数学 来源: 题型:
【题目】已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F
(1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明在此封闭图形内画出一个半径为2米的圆后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:
掷小石子落在不规则图形内的总次数 | 50 | 150 | 300 | … |
小石子落在圆内(含圆上)的次数m | 20 | 59 | 123 | … |
小石子落在圆外的阴影部分(含外缘)的次数n | 29 | 91 | 176 | … |
(1)当投掷的次数很大时,则m:n的值越来越接近 (结果精确到0.1)
(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在 附近(结果精确到0.1);
(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是多少平方米?(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与坐标轴交于A(﹣4,0)、B(2,0)、C(0,4),连接BC,AC.
(1)求抛物线的解析式;
(2)若点E是抛物线在第二象限上的一点,过点E作DE⊥AC于点D,求DE的最大值.
(3)若点E是抛物线上第二象限上的一动点,过点E作DE⊥AC于点D,连接CE,若△CDE与△COB相似,直接写出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图一张三角形纸片ABC,边AB长为10cm,AB边上的高为15cm,在三角形内从左到右叠放边长为2的正方形小纸片,第一次小纸片的一条边都在AB上,依次这样往上叠放上去,则最多能叠放的正方形的个数是( ).
A. 12B. 13C. 14D. 15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司在甲乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x(单位:辆)之间满足y=﹣x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润,若该公司在甲乙两地共销售30辆该品牌的汽车,甲乙两地总的销售利润为W万元,其中在甲地销售x辆.
(1)求W与x的函数关系式;
(2)甲乙两地各销售多少辆车时W最大?W的最大值是多少?
(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表显示的是某种大豆在相同条件下的发芽试验结果:
每批粒数n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
发芽的粒数m | 96 | 282 | 382 | 570 | 948 | 1904 | 2850 |
发芽的频率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.952 | 0.950 |
下面有三个推断:
①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;
②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;
③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A. ①②③ B. ①② C. ①③ D. ②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com