【题目】一段平直的公路上有三个城市,城在城和城之间,一辆慢车从城出发匀速开往城,与此同时一辆快车从城出发匀速开往城.当慢车到达城后立即以倍原速匀速返回到城.当快车到达城后,休息了半小时后再提高原速的的速度匀速开往城.下图是慢车出发后的时间(小时)与两车之间的距离(千米)之间的函数关系图,慢车出发6小时后,两车相距___________千米.
【答案】25
【解析】
由图可知A,B两地的距离为240千米;快车从B城出发匀速开往C城用了2小时,两车的距离增加了80千米,故快车原速比慢车原速快40千米/时;慢车用了4小时到达B地,据此可以求出慢车原速与快车原速,进而求出B,C两地的距离,然后根据“路程=时间×速度”解答即可.
由题意可知A,B两地的距离为240千米;慢车用了4小时到达B地;
故慢车原速为:240÷4=60千米/时;
∴快车原速为:60+(320240)÷2=100千米/时;
B,C两地的距离为:100×2=200千米,
∴慢车出发6小时后,两车相距为:
(620.5)×100×(1+10%)200(64)×60×=25千米
故答案为:25
科目:初中数学 来源: 题型:
【题目】已知直线与轴,轴分别交于点,将对折,使点的对称点落在直线上,折痕交轴于点.
(1)求点的坐标;
(2)若已知第四象限内的点,在直线上是否存在点,使得四边形为平行四边形?若存在,求出点的坐标;若不存在,说明理由;
(3)设经过点且与轴垂直的直线与直线的交点为为线段上一点,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段AB绕点A逆时针旋转60°得AC,连接BC,作△ABC的外接圆⊙O,点P为劣弧 上的一个动点,弦AB,CP相交于点D.
(1)求∠APB的大小;
(2)当点P运动到何处时,PD⊥AB?并求此时CD:CP的值;
(3)在点P运动过程中,比较PC与AP+PB的大小关系,并对结论给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,AB//EG//x轴,BC//DE//HG//AP//y轴,点D、C、P、H在x轴上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),把一条长为2019个单位长度且没有弹性的细线(粗细忽略不计)的一端固定在点A处,并按A-B-C-D-E-F-G-H-P-A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )
A.(1,2)B.(-1,2)C.(-1,-2)D.(1,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABO的顶点A是双曲线 与直线 在第二象限的交点,AB⊥ 轴于点B且S△ABO= .
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A,C的坐标;
(3)求△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题.
收集数据:
从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:
初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90
初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89
整理数据:
表一
分数段 | ||||
初一人数 | 1 | 12 | ||
初二人数 | 2 | 2 | 4 | 12 |
分析数据:
表二
种类 | 平均数 | 中位数 | 众数 | |
初一 | 90.5 | 91.5 | 84.75 | |
初二 | 90.5 | 100 | 123.05 |
得出结论:
(1)在表中:_______,_______,_______,_______;
(2)得分情况较稳定的是___________(填初一或初二);
(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为( )
A.60°
B.45°
C.40°
D.30°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC的斜边BC为边,在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO.若AB=4,AO=6,则AC的长等于( )
A. 12B. 16C. 8+6D. 4+6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组开展了一次活动,过程如下:如图1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将三角板中含45°角的顶点放在A上,斜边从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.
(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2 . 同组的小颖和小亮随后想出了两种不同的方法进行解决:
小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);
请你从中任选一种方法进行证明.
(3)小敏继续旋转三角板,请你继续研究:当135°<α<180°时(如图4),等量BD2+CE2=DE2是否仍然成立?请作出判断,不需要证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com