【题目】如图,平面直角坐标系的原点是正方形的中心,顶点,的坐标分别为、,把正方形绕原点逆时针旋转得到正方形,则正方形与正方形重叠部分形成的正八边形的边长为( )
A.
B.
C.
D.
科目:初中数学 来源: 题型:
【题目】(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于点,与轴交于点,过点作轴,交抛物线于点,并过点作轴,垂足为.抛物线和反比例函数的图象都经过点,四边形的面积是.
求反比例函数、二次函数的解析式及抛物线的对称轴;
如图,点从点出发以每秒个单位的速度沿线段向点运动,点从点出发以相同的速度沿线段img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为秒.
①当为何值时,四边形为等腰梯形;
②设与对称轴的交点为,过点作轴的平行线交于点,设四边形的面积为,求面积关于时间的函数解析式,并指出的取值范围;当为何值时,有最大值或最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知m,n(m<n)是关于x的方程(x–a)(x–b)=2的两根,若a<b,则下列判断正确的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小黄站在河岸上的点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船的俯角是,若小黄的眼睛与地面的距离是米,米,平行于所在的直线,迎水坡的坡度为,坡长米,则此时小船到岸边的距离的长为( )米.(,结果保留两位有效数字)
A. 11 B. 8.5 C. 7.2 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.
(1)若∠ADE=40°,求∠DBC的度数;
(2)若BC=6,△CDB的周长为15,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是双曲线y=上一点,过A作AB∥x轴,交直线y=﹣x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD=,则k的值为( )
A. ﹣2 B. ﹣3 C. ﹣ D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面图形上的任意两点,,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点,,保持,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:
①平移、②旋转、③轴对称,
其中一定是“同步变换”的有________(填序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com