【题目】如图,小黄站在河岸上的点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船的俯角是,若小黄的眼睛与地面的距离是米,米,平行于所在的直线,迎水坡的坡度为,坡长米,则此时小船到岸边的距离的长为( )米.(,结果保留两位有效数字)
A. 11 B. 8.5 C. 7.2 D. 10
【答案】D
【解析】
把AB和CD都整理为直角三角形的斜边,利用坡度和勾股定理易得点B和点D到CA的距离,进而利用俯角的正切值可求得CH长度.CH﹣AE=EH即为AC长度.
过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.
∵i==,设BE=4x,则AE=3x,AB=5x.
∵AB=10.5,∴x=2.1,∴BE=8.4,AE=6.3.
∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+8.4=10,AH=AE+EH=6.3+0.7=7.
在Rt△CDH中,∵∠C=∠FDC=30°,DH=10,tan30°==,∴CH≈17.
又∵CH=CA+7,即17=CA+7,∴CA=17﹣7=10(米).
故选D.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=(x-1)2-1.
(1)该抛物线的对称轴是______________,顶点坐标为____________;
(2)选取适当的数据填入下表,并在图中的直角坐标系内描点画出该抛物线;
x | … | … | |||||
y | … | … |
(3)根据图象,直接写出当y<0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ;
(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在中,,,是边上的中点,将绕点顺时针旋转,旋转角为得到,的两边分别与、边相交于点,两点,连结.
(1)求证:;
(2)求的度数;
(3)当变成等腰直角三角形时,求的长;
(4)在此运动变化的过程中,四边形的面积是否保持不变?试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系的原点是正方形的中心,顶点,的坐标分别为、,把正方形绕原点逆时针旋转得到正方形,则正方形与正方形重叠部分形成的正八边形的边长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区城进行绿化,空白区城进行广场硬化,阴影部分是边长为(a+b)米的正方形.
(1)计算广场上需要硬化部分的面积;
(2)若a=30,b=10,求硬化部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠ABC=30°.过点B作DB⊥AB交CA的延长线于点D,过点C作CE⊥AC交BA的延长线于点E,点F为AE的中点,连接CF.
(1)求证:△DBA≌△ECA;
(2)△CAF是等边三角形吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0),若平面直角坐标系xOy中的点P(a,b),有点P′的坐标为(a*b,a⊕b)与之相对应,则称点P′为点P的“k衍生点”.例如:P(1,4)的“2衍生点”为P′(1+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2衍生点”P′的坐标为 ;
(2)若点P的“5衍生点”P′的坐标为(﹣3,9),求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.
(1)求证:AEFD=AFEC;
(2)求证:FC=FB;
(3)若FB=FE=2,求⊙O的半径r的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com