精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB=90°,AB=18,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为( )

A. 6 B. 7 C. 8 D. 9

【答案】C

【解析】先解直角△ABC,得出BC=AB×cosB=18×=12,AC==6. 再根据旋转的性质得出BC=DC=6,AC=EC=3,∠BCD=∠ACE,利用等边对等角以及三角形内角和定理得出∠B=∠CAE,作CM⊥BD于M,作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,∠BCM=∠ACN,解直角△ANC求出AN=AC×cos∠CAN=6×=4,根据等腰三角形三线合一的性质得出AE=2AN=8.

解:∵在△ABC中,∠ACB=90°,AB=18,cosB=

∴BC=AB×cosB=18×=12,AC==6.

∵把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,

∴△ABC≌△EDC,BC=CD=12,AC=EC=6,∠BCD=∠ACE,

∴∠B=∠CAE.

作CN⊥AE于N,则∠BCM=∠BCD,∠ACN=∠ACE,

∴∠BCM=∠ACN,

∵在△ANC中,∠ANC=90°,AC=6,cos∠CAN=cosB=

∴AN=AC×cos∠CAN=6×=4

∴AE=2AN=8.

故答案为:8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ABC=45°,CDAB于点D,BE平分∠ABC,且BEAC于点E,与CD相交于点F,H是边BC的中点,连接 DH BE相交于点 G,若GE=3,则BF=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,点A与原点重合,点By轴的正半轴上,点Dx轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′CD相交于点M,则点M的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】21.(2013年四川攀枝花8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.

1)求购进甲,乙两种钢笔每支各需多少元;

2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案;

3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大;最大利润是多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为神秘数.如:42202124222206242,因此41220都是神秘数”.

1)试分析28是否为“神秘数”;

2)下面是两个同学演算后的发现,请选择一个“发现”,判断真、假,并说明理由.

①小能发现:两个连续偶数2k22k(其中k取非负整数)构造的“神秘数”也是4的倍数.

②小仁发现:2016是“神秘数”.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程: =-1; (2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线ABCD,点P在其所在平面上,且不在直线ABCDAC上,设PABPCDAPC=γ(αβγ,均不大于180°,且不小于0°)

1)如图1,当点P在两条平行直线ABCD之间、直线AC的右边时试确定αβγ的数量关系;

2)如图2,当点P在直线AB的上面、直线AC的右边时试确定αβγ的数量关系;

3αβγ的数量关系除了上面的两种关系之外,还有其他的数量关系,请直接写出这些.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》里有一道著名算题:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二乘、问上、下禾实一乘各几何?”大意是:3捆上等谷子结出的粮食,再加.上六斗,相当于10捆下等谷子结出的粮食.5捆下等谷子结出的粮食,再加上一斗,相当于2捆上等谷子结出的粮食.问:上等谷子和下等谷子每捆能结出多少斗粮食?请解答上述问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A50),B05.

1)如图 1P AB 上一点且,求 P 点坐标;

2)如图 2D OA 上一点,ACOB 且∠CBO=∠DCB,求∠CBD 的度数;

3)如图 3E OA 上一点,OFBE F,若∠BEO45°+∠EOF,求的值

查看答案和解析>>

同步练习册答案