精英家教网 > 初中数学 > 题目详情

如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=BFD.

(1)求证:FD是⊙O的一条切线;

(2)若AB=10,AC=8,求DF的长.


(1)证明见解析;(2)

【解析】(1)∵∠CDB=∠CAB,∠CDB=∠BFD,∴∠CAB=∠BFD,∴FD∥AC,∵∠AEO=90°,∴∠FDO=90°,∴FD是⊙O的一条切线;

(2)∵AB=10,AC=8,DO⊥AC,∴AE=EC=4,AO=5,∴EO=3,∵AE∥FD,∴△AEO∽△FDO,

,∴,解得:FD=


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为        元.

查看答案和解析>>

科目:初中数学 来源: 题型:


操作:小英准备制作一个表面积为6cm2的正方体纸盒,现选用一些废弃的纸片进行如下设计:

说明:

方案一:图形中的圆过点A.B.C;

方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.

纸片利用率=×100%

发现:(1)小英发现方案一中的点A.B恰好为该圆一直径的两个端点.你认为小英的这个发现是否正确,请说明理由.

(2)小英通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.(结果精确到0.1%)

探究:(3)小英感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.(结果精确到0.1%)

说明:方案三中的每条边均过其中两个正方形的顶点.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系xOy中,□OABC的顶点A、B的坐标分别为(6,0)、(7,3),将□OABC绕点O逆时针方向旋转得到□O,当点落在BC的延长线上时,线段交BC于点E,则线段的长度为      

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形ABCD中,AD=10,AB=8,点P在边CD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交BP于点F,过点M作ME⊥CP于E,则EF=        .

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,已知三角形ABC中,AB=BC=1,∠ABC=90度,把一块含30度角的三角板DEF的直角顶点D放在AC的中点上,将直角三角板DEF绕D点按逆时针方向旋转。

(1)在图1中,DE交AB于M,DF交BC于N.

①直接写出DM、DN的数量关系;

②在这一过程中,直角三角板DEF与三角形ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明如何变化的;若不发生变化,请求出其面积.

(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


,且1-ab2≠0,则=          .

查看答案和解析>>

科目:初中数学 来源: 题型:


在“老年节” 前夕,某公司工会组织323名退休职工到浙江杭州旅游,旅游前,工会确定每车保证有一名随团医生,并为此次旅游请了8名医生,现打算同时租甲、乙两种客车,其中甲种客车每辆载客50人,乙种客车每辆载客20人。

(1)请帮助工会设计租车方案。

(2)若甲种客车租金为800元/辆,乙种客车租金为600元/辆,工会按哪种方案租车最省钱?此时租金是多少?

(3)旅游前,一名医生由于有特殊情况,工会只能安排7名医生随团,为保证所租的每辆车安排有一名医生,租车方案调整为:同时租80座、50座和20座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问工会的租车方案如何安排?

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知二次函(m>0)的图象与x轴交于A、B两点.

(1)写出A、B两点的坐标(坐标用m表示);

(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;

(3)设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

同步练习册答案