精英家教网 > 初中数学 > 题目详情

【题目】一商家按标价销售工艺品时,每件可获利元,按标价的八五新销售工艺品件与将标价降低元销售这种工艺品件所获利润相等.

1)该工艺品每件的进价、标价分别是多少?

2)若每件工艺品按此进价进货,标价销售,商家每天可卖出工艺品件,若每件工艺品降价元,则每天可多卖出该工艺品件,间每件降价多少元销售,每天获得利润最大?获得最大利润是多少元?

【答案】(1)每件进价为155元,标价为200元;(2)时,

【解析】

1)依题意,可设每件进价为元,标价为元,根据题中等量关系可列方程组,解出xy的值即可

2)设每天获利w元,降价为元,再根据利润=(标价成本)×售出数量,列出函数关系式即可得解.

1)设每件进价为元,标价为元,

由题意可得

解得

答:每件进价为155元,标价为200元;

2)设每件应降价元出售,每天获利为元,

由题意可得:

∴当时,.

答:每件降价10元销售,每天获得利润最大,获得最大利润是,4900.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=6P为边CD上一点,把△BCP沿直线BP折叠,顶点C折叠到C′,连接BC′AD交于点E,连接CEBP交于点Q,若CEBE.

(1)求证:△ABE∽△DEC

(2)AD=13时,AE<DE,求CE的长;

(3)连接C′Q,直接写出四边形C′QCP的形状:______.CP=4时,并求CEEQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cosA=,则k的值为( )

A. -3  B. -6  C. -4 D. -

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角三角形ABC中,直角边,设PQ分别为ABBC上的动点,点P自点A沿AB方向向点B作匀速移动且速度为每秒2cm,同时点Q自点B沿BC方向向点C作匀速移动且速度为每秒1cm,当P点到达B点时,Q点就停止移动.PQ移动的时间t.

1)写出的面积S)与时间ts)之间的函数表达式,并写出t的取值范围.

2)当t为何值时,为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,∠CBG=ACD为直径,OCAB相交于点E,过点EEFBC,垂足为F,连接BD

1)求证:BG与⊙O相切;

2)若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第五代移动电话通信行动标准,也称第五代移动通信技术,外语缩写:5G.也是4G之后的延伸,正在研究中,5G网络的理论下行速度为10Gb/s(相当于下载速度1.25GB/s).2019124日,华为发布了迄今最强大的5G基带芯片Balong500,同时,还发布了全球最快CPE,支持智能家居连接.中国5G技术的研发带来了社会生产力和社会关系的重大改变,它是国人的骄傲….小明组织了几位同学就5G手机面世后自己居住的小区使用手机的居民是否立即改用5G手机问题,随机对本小区的部分使用手机的居民进行了问卷调查(分五类:A表示非常期待体验,将立即使用;B表示担心费用太高消费不起,但还是要体验,将立即使用;C表示怕技术不成熟,造成经济损失,但还是要体验,将立即使用;D表示先等待一段时间后再说,暂时不体验,不立即使用;E表示其它原因不体验,不立即使用).根据调查结果分别绘制了如下两个统计图,请根据图中提供的信息解答下列问题:

1)随机被调查的居民总人数为   人,m   ,扇形统计图中A类所对应扇形的园心角为   度;

2)请根据统计数据补全条形统计图;

3)若小区有使用手机的居民共约8000人,请估计约有多少居民在5G手机面世后不立即使用5G手机?若通讯公司在5G手机面世后第一个月在本小区的业务目标是最多2000手机用户不使用5G手机,请根据计算结果帮助公司拟定一条宣传建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,点O为其中心.将其绕点O顺时针旋转45°后得到正方形A'B'C'D',则旋转前后两正方形重叠部分构成的多边形的周长为(  )(参考计算:

A.168B.1616C.128D.1612

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:在平面直角坐标系中,任意两点Ax1y1),Bx2y2)之间的位置关系有以下三种情形;

①如果ABx轴,则y1y2AB=|x1x2|

②如果ABy轴,则x1x2AB=|y1y2|

③如果ABx轴、y轴均不平行,如图,过点A作与x轴的平行线与过点B作与y轴的平行线相交于点C,则点C坐标为(x2y1),由①得AC=|x1x2|;由②得BC=|y1y2|;根据勾股定理可得平面直角坐标系中任意两点的距离公式AB

小试牛刀:

1)若点A坐标为(﹣23),B点坐标为(33)则AB   

2)若点A坐标为(32),B点坐标为(3,﹣4)则AB   

3)若点A坐标为(32),B点坐标为(7,﹣1)则AB   

学以致用:

若点A坐标为(22),点B坐标为(44),点Px轴上的动点,当AP+PB取得最小值时点P的坐标为  并求出AP+PB最小值= 

挑战自我:

已知MN根据数形结合,直接写出M的最小值=   N的最大值=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为直角ABC中斜边AC上一点,且ABAD,以AB为直径的⊙OAD于点F,交BD于点E,连接BFBF

1)求证:BEFE

2)求证:∠AFE=∠BDC

3)已知:sinBAEAB6,求BC的长.

查看答案和解析>>

同步练习册答案