考点:解分式方程
专题:
分析:方程两边都乘以(x-1)(x-2)(x-4)(x-5)去分母把分式方程化为整式方程,再求解,然后检验即可.
解答:解:方程两边都乘以(x-1)(x-2)(x-4)(x-5)得,
x(x-2)(x-4)(x-5)-(x-1)(x-1)(x-4)(x-5)=(x-3)(x-1)(x-2)(x-5)-(x-4)(x-1)(x-2)(x-4),
(x-4)(x-5)(x2-2x-x2+2x-1)=(x-1)(x-2)(x2-8x+15-x2+8x-16),
(x-4)(x-5)=(x-1)(x-2),
x2-9x+20=x2-3x+2,
解得x=3,
检验:当x=3时,(x-1)(x-2)(x-4)(x-5)=(3-1)(3-2)(3-4)(3-5)=4≠0,
所以,原方程的解是x=3.
点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.