精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.

【答案】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC, ∵AB∥CD,
∴OF⊥CD,
∵AB=30cm,CD=16cm,
∴AE= AB= ×30=15cm,CF= CD= ×16=8cm,
在Rt△AOE中,
OE= = =8cm,
在Rt△OCF中,
OF= = =15cm,
∴EF=OF﹣OE=15﹣8=7cm.
答:AB和CD的距离为7cm.

【解析】过点O作弦AB的垂线,垂足为E,延长AE交CD于点F,连接OA,OC;由于AB∥CD,则OF⊥CD,EF即为AB、CD间的距离;由垂径定理,易求得AE、CF的长,在构建的直角三角形中,根据勾股定理即可求出OE、OF的长,也就求出了EF的长,即弦AB、CD间的距离.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2,以及对垂径定理的理解,了解垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,直线ABCD于点OOE平分∠BODOF平分∠COB,∠AOD∶∠BOE41,则∠AOF等于(  )

A. 130°

B. 120°

C. 110°

D. 100°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线

1)如图1,直接写出的数量关系为

2)如图2的角平分线所在的直线相交于点,试探究之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,过点A(8,6)分别做x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).

(1)直接写出点B和点C的坐标:B( )C( ).

(2)当点P运动时,用含t的代数式表示线段AP的长,并写出t的取范围;

(3)点D(2,0),连结PD、AD,在(2)的条件下是否存在这样的t值,使S△APD=S四边形ABOC,若存在,请求t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).

甲、乙两人射箭成绩统计表

第1次

第2次

第3次

第4次

第5次

甲成绩

9

4

7

4

6

乙成绩

7

5

7

a

7


(1)a= =
(2)请完成图中表示乙成绩变化情况的折线;
(3)①观察图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
②请你从平均数和方差的角度分析,谁将被选中.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ADBCCEAB,垂足分别为DEADCE交于点H,请你添加一个适当的条件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).

(1)求点B的坐标.
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且SPOC=4SBOC , 求点P的坐标.
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某面粉加工厂加工的面粉,用每袋可装10g面粉的袋子装了200袋经过称重,质量超过标准质量10kg的用正数表示,质量低于标准质量10kg的用负数表示,结果记录如下

与标准质量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋数()

40

30

10

25

40

20

35

(1)求这批面粉的总质量;

(2)如果100kg小麦加工80kg面粉,那么这批面粉是由多少千克小麦加工的?

查看答案和解析>>

同步练习册答案