【题目】已知直线y=x+3与两坐标轴分别相交于A、B两点,若点P、Q分别是线段AB、OB上的动点,且点P不与A、B重合,点Q不与O、B重合.
(1)若OP⊥AB于点P,△OPQ为等腰三角形,这时满足条件的点Q有几个?请直接写出相应的OQ的长;
(2)当点P是AB的中点时,若△OPQ与△ABO相似,这时满足条件的点Q有几个?请分别求出相应的OQ的长;
(3)试探究是否存在以点P为直角顶点的Rt△OPQ?若存在,求出相应的OQ的范围,并求出OQ取最小值时点P的坐标;若不存在,请说明理由.
【答案】(1) 点Q有三个,OQ的长为2或或 ;(2) 2个,OQ的长为2或;(3)存在,OQ取最小值时点P的坐标(,).
【解析】
试题分析:(1)如图1中,满足条件的点Q有三个,分三种情形讨论即可①QO=QP,②OP=OQ,③PO=PQ.
(2)如图2中,满足条件的点Q有2个.作⊥OB于,⊥OP于,可以证明、满足条件,理由相似三角形的性质即可解决问题.
(3)存在.以OQ为直径作⊙G,当⊙G与AB相切于点P时,∠OPQ=90°,此时OQ的值最小.由此求出OQ,即可解决问题.
试题解析:(1)如图1中,满足条件的点Q有三个.
理由:作PM⊥OB于M,作OP的垂直平分线交OP于F,交OB于.则=,△是等腰三角形,此时=OB=2.
∵A(0,3),B(4,0),
∴OA=3,OB=4,AB=5,
∵OP⊥AB,
∴OAOB=ABOP,
∴OP==,
当=OP时,△是等腰三角形,此时=,
当PO=时,∵PM⊥,
∴=2OM,
∵∠POM=∠,∠PMO=∠OPB,
∴△OPM∽△OBP,
∴=OMOB,
∴OM=,
∴=.
综上所述,△OPQ为等腰三角形时,满足条件的点Q有三个,OQ的长为2或或.
(2)如图2中,满足条件的点Q有2个.
理由:作⊥OB于,⊥OP于,
∵PA=PB,∠AOB=90°,
∴PA=PB=PO,
∴∠=∠ABO,∵∠=∠AOB,
∴△∽△BAO,
∵PA=PB,∥OA,
∴==OB=2,
∵∠=∠ABO,∠=∠AOB,
∴△∽△BOA,
∴,
∴,
∴=,
综上所述,△OPQ与△ABO相似时,满足条件的点Q有2个,OQ的长为2或.
(3)存在.理由如下:
如图3中,以OQ为直径作⊙G,当⊙G与AB相切于点P时,∠OPQ=90°,此时OQ的值最小.
∴设OG=GP=r,
∵AO=AP=3,
∴PB=AB=AP=2,
在Rt△PBG中,∵∠GPB=90°,PG=r,BG=4﹣r,PB=2,
∴,
∴r=,
∴OQ=2r=3,
∴当3≤OQ<4时,△OPQ可为直角三角形.
作PM⊥OB于M.
∵PM∥OA,
∴,
∴,
∴PM=,BM=,
∴OM=4﹣=,
∴OQ取最小值时点P的坐标(,).
科目:初中数学 来源: 题型:
【题目】高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.
(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);
(2)求这条公路在免疫区内有多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小红用刻度尺量了这个四边形的四条边长,然后告诉小明,纸板是标准的平行四边形,小红得出这个结论的依据是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:
(1)求全班学生人数和m的值.
(2)直接写出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=(k是常数).
(1)若该函数的图象与x轴有两个不同的交点,试求k的取值范围;
(2)若点(1,k)在某反比例函数图象上,要使该反比例函数和二次函数y=都是y随x的增大而增大,求k应满足的条件及x的取值范围;
(3)若抛物线y=与x轴交于A(,0)、B(,0)两点,且<,=34,若与y轴不平行的直线y=ax+b经过点P(1,3),且与抛物线交于(,)、(,)两点,试探究是否为定值,并写出探究过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若三角形的三个内角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是______,另外一边的平方是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).
(1)点(,1)的限变点的坐标是 ;
(2)判断点A(﹣2,﹣1)、B(﹣1,2)中,哪一个点是函数y=图象上某一个点的限变点?并说明理由;
(3)若点P(a,b)在函数y=﹣x+3的图象上,其限变点Q(a,b′)的纵坐标的取值范围是﹣6≤b′≤﹣3,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com