精英家教网 > 初中数学 > 题目详情

【题目】分块计数法:对有规律的图形进行计数时,有些题可以采用分块计数的方法.例如:图16个点,图212个点,图318个点,……,按此规律,求图10、图n有多少个点?

我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×16个;图2中黑点个数是6×212个:图3中黑点个数是6×318个;……;所以容易求出图10、图n中黑点的个数分别是606n

请你参考以上分块计数法,先将下面的点阵进行分块,再完成以下问题:

1)第5个点阵中有   个圆圈;第n个点阵中有   个圆圈.

2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.

【答案】1613n23n+1;(2)小圆圈的个数会等于271,它是第10个点阵

【解析】

(1)2个图中2个小圆圈为一块,分为3,1,3个图中3个小圆圈为一块,分为6,1;按此规律得:第5个图中5个小圆圈为一块,分为12,1,由此即可求得第n个点阵图中小圆圈的个数;

(2)代入271,列方程,方程有解则存在这样的点阵.

解:(1)如图所示:第1个点阵中有:1,

2个点阵中有:2×3 ×(2-1)+17,

3个点阵中有:3×3 ×(3-1)+119,

4个点阵中有:4×3 ×(4-1)+137,

5个点阵中有:5×3 ×(5-1)+161,

n个点阵中有:n×3(n1)+13n23n+1,

故答案为:61,3n23n+1

(2)3n23n+1271,

n2n900,

(n10)(n+9)0,

n110,n2=﹣9(),

小圆圈的个数会等于271,它是第10个点阵.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为1ABAD上各有一点PQ,如果的周长为2,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,设抛物线Ty=ax2+c(a> 0)与直线L:y=kx-4(k> 0)A,B两点(点B在点A的右侧).

1)如图,若点A-),且a+c=-1.

①求抛物线T和直线L的解析式;

②求△AOB的面积.

2)设点C是点B关于y轴的对称点,当点A,O,C三点共线时,求实数c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):

温度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增长量/mm

……

41

49

49

41

25

19.75

……

由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.

1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;

2)温度为多少时,这种植物每天高度的增长量最大?

3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:t1t2是方程t2+2t240的两个实数根,且t1t2,抛物线yx2+bx+c的图象经过点At10),B0t2).

1)求这个抛物线的解析式;

2)设点Pxy)是抛物线上一动点,且位于第三象限,四边形OPAQ是以OA为对角线的平行四边形,求平行四边形OPAQ的面积Sx之间的函数关系式,并写出自变量x的取值范围;

3)在(2)的条件下,当平行四边形OPAQ的面积为24时,是否存在这样的点P,使OPAQ为正方形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016·荆门中考)如图,天星山山脚下西端A处与东端B处相距800(1)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+mx+mm0)的顶点为A,交y轴于点C

1)求出点A的坐标(用含m的式子表示);

2)若直线y=﹣xn经过点A,与抛物线交于另一点B,证明:AB的长是定值;

3)连接AC,延长ACx轴于点D,作直线AD关于x轴对称的直线,与抛物线分别交于EF两点.若∠ECF90°,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家教育部提出每天锻炼一小时,健康工作五十年,幸福生活一辈子”.万州区某中学对九年级部分学生进行问卷调查你最喜欢的锻炼项目是什么?,规定从打球跑步游泳跳绳其他五个选项中选择自己最喜欢的项目,且只能选择一个项目,并将调查结果绘制成如下两幅不完整的统计图.

最喜欢的锻炼项目

人数

打球

120

跑步

游泳

跳绳

30

其他

1)这次问卷调查的学生总人数为 ,人数

2)扇形统计图中, 其他对应的扇形的圆心角的度数为 度;

3)若该年级有1200名学生,估计喜欢跳绳项目的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y(x1)(x2)(x3)的图象与性质.小东对函数y(x1)(x2)(x3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:

(1)函数y(x1)(x2)(x3)的自变量x的取值范围是_______

(2)下表是yx的几组对应值.

x

2

1

0

1

2

3

4

5

6

y

m

24

6

0

0

0

6

24

60

m_____

②若M(7,﹣720)N(n720)为该函数图象上的两点,则n_____

(3)在平面直角坐标系xOy中,A(xAyA)B(xB,﹣yA)为该函数图象上的两点,且A2≤x≤3范围内的最低点,A点的位置如图所示.

①标出点B的位置;

②画出函数y(x1)(x2)(x3)(0≤x≤4)的图象.

③写出直线yx1与②中你画出图象的交点的横坐标之和为______.

查看答案和解析>>

同步练习册答案