【题目】有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质.小东对函数y=(x﹣1)(x﹣2)(x﹣3)的图象与性质进行了探究.下面是小东的探究过程,请补充完成:
(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是_______;
(2)下表是y与x的几组对应值.
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | … | m | ﹣24 | ﹣6 | 0 | 0 | 0 | 6 | 24 | 60 | … |
①m=_____;
②若M(﹣7,﹣720),N(n,720)为该函数图象上的两点,则n=_____;
(3)在平面直角坐标系xOy中,A(xA,yA),B(xB,﹣yA)为该函数图象上的两点,且A为2≤x≤3范围内的最低点,A点的位置如图所示.
①标出点B的位置;
②画出函数y=(x﹣1)(x﹣2)(x﹣3)(0≤x≤4)的图象.
③写出直线y=x﹣1与②中你画出图象的交点的横坐标之和为______.
【答案】(1)全体实数;(2)①-60;②11;(3)①见解析;②见解析;③0.
【解析】
(1)函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数;
(2)①把x=﹣2代入函数解析式可求得m的值;
②观察给定表格中的数据可发现函数图象上的点关于点(2,0)对称,再根据点M、N的坐标即可求出n值;
(3)①找出点A关于点(2,0)对称的点B1,再找出与点B1纵坐标相等的B2点;
②根据表格描点、连线即可得出函数图象;
③根据图象的性质以及直线的性质即可求得.
解:(1)x取任何数都可以,因此函数y=(x﹣1)(x﹣2)(x﹣3)的自变量x的取值范围是全体实数
(2)①当x=﹣2时,y=(x﹣1)(x﹣2)(x﹣3)=﹣60.
故答案为:﹣60.
②观察表格中的数据可得出函数图象关于点(2,0)中心对称,
∴﹣7+n=2×2,解得:n=11.
故答案为:11.
(3)①作点A关于点(2,0)的对称点B1,再在函数图象上找与点B1纵坐标相等的B2点.
②根据表格描点、连线,画出图形如图所示.
③函数图象关于点(2,0)中心对称,且直线y=﹣1经过此点,
∴直线y=x﹣1与图象的交点的纵坐标化为相反数,
∴交点的纵坐标之和为0,
故答案为0.
科目:初中数学 来源: 题型:
【题目】“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是60、6n.
请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的ALMN,若中间空白部分四边形OPQR恰好是正方形,且ALMN的面积为50,则正方形EFGH的面积为( )
A. 24 B. 25 C. 26 D. 27
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:
(1)在图中确定该圆弧所在圆的圆心D点的位置,并写出点D点坐标为________.
(2)连接AD、CD,求⊙D的半径及的长;
(3)有一点E(6,0),判断点E与⊙D的位置关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线交 y轴于点为A,顶点为D,对称轴与x轴交于点H.
(1)求顶点D的坐标(用含m的代数式表示);
(2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线的位置,求平移的方向和距离;
(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣2.关于下列结论:①ab<0;②b2﹣4ac>0;③9a﹣3b+c>0;④b﹣4a=0;⑤ 方程ax2+bx=0的两个根为 x1=0,x2=﹣4,其中正确的结论有( )
A.②③B.②③④C.②③⑤D.②③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,AD=3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DP=t,EQ=t.
(1)当点P在线段DE上(不包括端点)时.
①求证:AP=PQ;②当AP平分∠DPB时,求△PBQ的面积.
(2)在点P,Q的运动过程中,是否存在这样的t,使得△PBQ为等腰三角形?若存在,请求出t的值;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.
(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是 ;
(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;
(3)当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转90°,得到线段PD,连接DB.
(1)请在图中补全图形;
(2)∠DBA的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com