【题目】正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果的周长为2,求的度数.
【答案】45°.
【解析】
首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.
解:如图所示,
△APQ的周长为2,即AP+AQ+PQ=2①,
正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,
∴AP+AQ+QD+PB=2②,
①-②得,PQ-QD-PB=0,
∴PQ=PB+QD.
延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),
∴∠BCM=∠DCQ,CM=CQ,
∵∠DCQ+∠QCB=90°,
∴∠BCM+∠QCB=90°,即∠QCM=90°,
PM=PB+BM=PB+DQ=PQ.
在△CPQ与△CPM中,
CP=CP,PQ=PM,CQ=CM,
∴△CPQ≌△CPM(SSS),
∴∠PCQ=∠PCM=∠QCM=45°.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,边长为1的正方形的两个顶点,分别在轴、轴的正半轴上,点是原点.现在将正方形绕原点顺时针旋转,当点第一次落在直线上时停止.旋转过程中,边交直线于点,边交轴于点.
(1)若点,求此时点的坐标及的值;
(2)若的周长是,在旋转过程中,值是否会发生变化?若不变,请求出这个定值,若有变化,请说明理由;
(3)设,当为何值时的面积最小,最小值是多少?并直接写出此时内切圆半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学可以让人高雅,益智,豪情逸致,某中学为开拓学生视野,开展“课外学数学”活动,随机调查了九年级部分学生一周的课外学习数学时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为____________人,被调查学生课外学习数学时间的中位数是____________小时,众数是 小时;
(2)请你补全条形统计图;
(3)在扇形统计图中,课外学习数学时间为5小时的扇形的圆心角度数是____________;
(4)九年级有学生700人,估计九年级一周课外学习数学时间不少于5小时小时的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级学生数学期末考试情况,小方随机抽取了部分学生的数学成绩(分数都为整数)为样本,分为A.分;B.分;C.分;D.分四个等级进行统计,并将统计结果制成如下两幅尚不完整的统计图.请根据图中信息解答下列问题:
(1)这次随机抽取的学生共有多少人?
(2)请将条形统计图补充完整;
(3)该校九年级共有学生人,若分数为分以上(含分)为及格,请估计这次九年级学生期末数学考试成绩为及格的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.
(1)利用尺规作图作出点D,不写作法但保留作图痕迹.
(2)若△ABC的底边长5,周长为21,求△BCD的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦AC与BD交于点E,且AC=BD,连接AD,BC.
(1)求证:△ADB≌△BCA;
(2)若OD⊥AC,AB=4,求弦AC的长;
(3)在(2)的条件下,延长AB至点P,使BP=2,连接PC.求证:PC是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(b,c为常数).
(1)若抛物线的顶点坐标为(1,1),求b,c的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围;
(3)在(1)的条件下,存在正实数m,n( m<n),当m≤x≤n时,恰好有,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为传承中华优秀传统文化,某校团委准备组织“汉字听写”大赛.九年级一班为推选学生参加学校的这次活动,在班级内举行了一次选拔赛,并把选拔赛的成绩分为,,,四个等级,根据成绩统计绘制成了如图所示的两幅不完整的统计图.请你根据图中所给出的信息解答下列各题.
(1)九年级一班共有多少人?
(2)补全条形统计图,并求出扇形统计图中等级为“D”的部分所对应的圆心角度数;
(3)现准备从等级为“A”的四名同学中,随机抽选出两名同学代表班级参加学校的“汉字听写”大赛.已知同一小组的李华和张军的成绩都是“A”等,请用列表法(或树状图法)求恰好抽到李华和张军的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com