精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD长与宽的比为53,点EF分别在边BCCD上,tan1tan2,则cos(∠1+2)的值为(  )

A.B.C.D.

【答案】B

【解析】

AB3aCDADBC5a,可求CF2aBEECAB3a,由SAS可证ABE≌△ECF,可得AEEF,∠1=∠FEC,可求∠EAF45°,即可求cos(∠1+2)的值.

连接EF

∵矩形ABCD长与宽的比为53

∴设AB3aCDADBC5a

BE2aDFa

CF2aBEECAB3a,且∠B=∠C90°

∴△ABE≌△ECFSAS

AEEF,∠1=∠FEC

∵∠1+AEB90°

∴∠AEB+FEC90°

∴∠AEF90°,且AEEF

∴∠EAF45°

∴∠1+245°

cos(∠1+2)=.

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与反比例函数在第二象限内的图象相交于点

(1)求反比例函数的解析式;

(2)将直线向上平移后与反比例函数图象在第二象限内交于点,与轴交于点,且的面积为,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABCD为正方形,将正方形的边CB绕点C顺时针旋转到CE,记BCE,连接BEDE,过点CCFDEF,交直线BEH

(1)当α=60°时,如图1,则BHC=

(2)当45°<α<90°,如图2,线段BHEHCH之间存在一种特定的数量关系,请你通过探究,写出这个关系式: (不需证明);

(3)当90°<α<180°,其它条件不变(如图3),(2)中的关系式是否还成立?若成立,说明理由;若不成立,写出你认为成立的结论,并简要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,∠ACB30°,将△ACDC点顺时针旋转α0°<α360°)至△A'CD'位置.

1)如图2,若AB2α30°,求SBCD

2)如图3,取AA′中点O,连OBOD′、BD′.若△OBD′存在,试判定△OBD′的形状.

3)当αα1时,OBOD′,则α1   °;当αα2时,△OBD′不存在,则α2   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AB为⊙O直径,BC为⊙O切线,切点为BCO平行于弦AD,作直线DC

(1)求证:DC为⊙O切线;

(2) AD·OC=8,求⊙O半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动阳光体育运动的广泛开展,引导学生走向操场、走进大自然、走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:

(Ⅰ)本次接受随机抽样调查的学生人数为________,图①中的值为________

(Ⅱ)求本次调查获取的样本数据的众数和中位数;

(Ⅲ)根据样本数据,若学校计划购买150双运动鞋,建议购买35号运动鞋多少双?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+2分别与x轴,y轴交于AB两点,与双曲线y交于EF两点,若AB2EF,则k的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019428日,由世界月季联合会、中国花卉协会中国花卉协会月季分会主办的“2019世界月季洲际大会暨第九届中国月季展在河南阳开幕.来自澳大利亚、比利时、智利、芬兰等个国家的专家学者和其他各界人士共襄盛会,交流月季裁培造景、育种、文化等方面的研究进展及成果.为了解该市民对月季展的关注情况(选项分为:“A——高度关注“B——般关“C——关注度低“D——不关注,某校兴趣小组随机采访该市部分市民,对采访情况制作了如下不完整的统计图表.

根据以上统计图,解答下列问题:

本次接受采访的市民共有 人;

在扇形统计图中,扇形的圆心角的度数是

请补全条形统计图;

若该市区有万人,根据采访结果,估计不关注月季展市民的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y的图象经过第一象限内的一点A(n4),过点AABx轴于点B,且△AOB的面积为2

(1)mn的值;

(2)若一次函数ykx+2的图象经过点A,并且与x轴相交于点C,求线段AC的长.

查看答案和解析>>

同步练习册答案