精英家教网 > 初中数学 > 题目详情

【题目】如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y= 上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1 , l2于M,N两点.

(1)求双曲线C及直线l2的解析式;
(2)求证:PF2﹣PF1=MN=4;
(3)如图2所示,△PF1F2的内切圆与F1F2 , PF1 , PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1 , y1),B(x2 , y2),则A、B两点间的距离公式为AB= .)

【答案】
(1)

解:把A(﹣2,﹣1)代入y= 中得:

a=(﹣2)×(﹣1)=2,

∴双曲线C:y=

∵直线l1与x轴、y轴的交点分别是(2,0)、(0,2),它们关于原点的对称点分别是(﹣2,0)、(0,﹣2),

∴l2y=﹣x﹣2


(2)

解:设P(x, ),

由F1(2,2)得:PF12=(x﹣2)2+( ﹣2)2=x2﹣4x+ +8,

∴PF12=(x+ ﹣2)2

∵x+ ﹣2= = >0,

∴PF1=x+ ﹣2,

∵PM∥x轴

∴PM=PE+ME=PE+EF=x+ ﹣2,

∴PM=PF1

同理,PF22=(x+2)2+( +2)2=(x+ +2)2

∴PF2=x+ +2,PN=x+ +2

因此PF2=PN,

∴PF2﹣PF1=PN﹣PM=MN=4


(3)

解:

△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,

PF2﹣PF1=QF2﹣QF1=4

又∵QF2+QF1=F1F2=4 ,QF1=2 ﹣2,

∴QO=2,

∵B( ),

∴OB=2=OQ,

所以,点Q与点B重合


【解析】(1)利用点A的坐标求出a的值,根据原点对称的性质找出直线l2上两点的坐标,求出解析式;(2)设P(x, ),利用两点距离公式分别求出PF1、PF2、PM、PN的长,相减得出结论;(3)利用切线长定理得出 ,并由(2)的结论PF2﹣PF1=4得出PF2﹣PF1=QF2﹣QF1=4,再由两点间距离公式求出F1F2的长,计算出OQ和OB的长,得出点Q与点B重合.此题主要考查了圆的综合应用以及反比例函数的性质等知识,将代数与几何融合在一起,注意函数中线段的长可以利用本题给出的两点距离公式解出,也可以利用勾股定理解出;解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.
【考点精析】本题主要考查了反比例函数的性质的相关知识点,需要掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求证:全等三角形对应边上的中线相等(请根据图形,写出已知、求证、证明)

已知:

求证:

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A﹣12),B﹣41),C﹣2﹣2

1)请写出△ABC关于x轴对称的点A1B1C1的坐标;

2)请在这个坐标系中作出△ABC关于y轴对称的△A2B2C2

3)计算:△A2B2C2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y= ,10:00之后来的游客较少可忽略不计.

(1)请写出图中曲线对应的函数解析式;
(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,是假命题的是( )

A. 在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形

B. 在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形

C. 在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形

D. 在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是梯形,ADBC,A=90°,BC=BD,CEBD,垂足为E.

(1)求证:ABD≌△ECB;

(2)若DBC=50°,求DCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,MBA=NDC,下列条件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

同步练习册答案