精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC和以AB为边的正方形ABEF,已知∠ACB=90°,AC=12,BC=5,求正方形ABEF的面积.
考点:勾股定理
专题:
分析:首先利用勾股定理计算出AB长,然后再利用正方形的面积公式可得答案.
解答:解:∵∠ACB=90°,AC=12,BC=5,
∴AB=
122+52
=13,
∵四边形ABCD是正方形,
∴正方形ABEF的面积是13×13=169.
点评:此题主要考查了勾股定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,AD是∠BAC的平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:BD=CE=AF,DE=DF=EF,△DEF为正三角形.求证:△ABC为正三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,点A的坐标为(2,1).
(1)求OA的长.
(2)点P为x轴正半轴上的一点,且△AOP是等腰三角形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,分别以等腰直角三角形ACD的边AD,AC,CD为直径画半圆.
(1)设AD=4,求三个半圆的面积之和.
(2)设AD=m,用含有m的式子表示两个月型图案AGCE和DHCF的面积之和;
(3)两个月型图案AGCE和DHCF的面积之和等于Rt△ACD的面积.
(4)变式:如果△ACD只是一般直角三角形,那么(3)中的结论还成立吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,北部湾海面有一艘某军的军舰正在基地A的正东方向且距A地60海里的B处训练,突然接到基地命令,要该舰前往C岛,接送一名病危的渔民到基地医院救治.已知C岛在A的北偏东60°方向.且在B的北偏西30°方向,军舰从B处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院.(精确到0.1小时)(
2
=1.414,
3
=1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

分解因式:x2+xy-2y2-x+7y-6.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠A=60°,∠B=∠D=90°,AB=2,CD=1,求BC和AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:AF=CE.

查看答案和解析>>

同步练习册答案