精英家教网 > 初中数学 > 题目详情
如图,已知∠A=60°,∠B=∠D=90°,AB=2,CD=1,求BC和AD的长.
考点:勾股定理,含30度角的直角三角形
专题:
分析:延长AD与BC,两延长线交于点E,由∠B=∠D=90°,得到三角形ABE与三角形CDE都为直角三角形,由∠A=60°,得到∠E=30°,在直角三角形CDE中,利用30°所对的直角边等于斜边的一半,根据CD的长求出DE的长,同理在直角三角形ABE中,由AB的长求出AE的长,用AE-DE求出AD的长,用BE-CE求出BC的长即可.
解答:解:延长AD与BC,两延长线交于点E,如图所示,
∵∠B=90°,∠A=60°,
∴∠E=30°,
在Rt△CDE中,CD=1,
∴CE=2CD=2,
根据勾股定理得:DE=
CE2-CD2
=
3

在Rt△ABE中,AB=2,
∴AE=2AB=4,
根据勾股定理得:BE=
AE2-AB2
=2
3

则BC=BE-CE=2
3
-2,AD=AE-DE=4-
3
点评:此题考查了勾股定理,以及含30°直角三角形的性质,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某会展中心在一次会展期间准备在楼梯上铺地毯,已知楼梯的高BC为5m,斜面AC为13m,每一级楼梯宽AD为2m,地毯的价格为每平方米20元,铺完这个楼梯至少需要多少元钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC和以AB为边的正方形ABEF,已知∠ACB=90°,AC=12,BC=5,求正方形ABEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平行四边形ABCD的面积为36,对角线AC,BD交于点O点,E为CD上一点,已知四边形EFOG的面积为3,则阴影部分的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在?ABCD中,对角线BD⊥AB,∠A=30°,DE平分∠ADC交AB的延长线于点E,连接CE.
(1)求证:AD=AE;
(2)设AD=12,连接AC交BD于点O,画出图形,并求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AD,BE,CF是角平分线,交点是点G,GH⊥BC,试说明∠BGD=∠CGH的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,DE是△ABC的中位线,点F在AC的延长线上,且CF=
1
2
AC.求证:AD=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=BD=DA.
(1)求∠A的度数;
(2)求证:点D是AC的黄金分割点;
(3)求sin
A
2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,填空:
(1)若∠1=
 
,则AB∥DF;若∠1=
 
,则DE∥BC.
(2)若∠2=
 
,则DE∥BC;若∠2+
 
=180°,则EF∥DC.
(3)若∠5=
 
,则AB∥DF;若∠5+
 
=180°,则EF∥DC.
(4)若∠8=
 
,则DE∥BC;若∠C+
 
=180°,则EF∥DC.

查看答案和解析>>

同步练习册答案