分析 (1)方程利用平方根定义开方即可求出解;
(2)原式利用平方根,立方根,绝对值的代数意义,以及二次根式的性质化简,即可得到结果;
(3)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则变形,即可得到结果;
(4)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.
解答 解:(1)开方得:x+5=4或x+5=-4,
解得:x1=-1,x2=-9;
(2)原式=6+$\sqrt{2}$-1+2+5=12+$\sqrt{2}$;
(3)原式=1-$\frac{x-y}{x+2y}$•$\frac{(x+2y)^{2}}{(x+y)(x-y)}$=1-$\frac{x+2y}{x+y}$=$\frac{x+y-x-2y}{x+y}$=-$\frac{y}{x+y}$;
(4)原式=$\frac{(x-1)^{2}}{(x+1)(x-1)}$÷$\frac{x+1+x-3}{x+1}$=$\frac{x-1}{x+1}$•$\frac{x+1}{2(x-1)}$=$\frac{1}{2}$.
点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com