【题目】如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.
(1)求直线AB和反比例函数的解析式;
(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.
【答案】(1);(2)(-6,0)或(2,0)
【解析】
(1)根据解直角三角形求得点A、点B以及点C的坐标,利用A、B两点的坐标求得一次函数解析式,利用点C的坐标求得反比例函数解析式;
(2)根据△CDE与△COB的面积相等,求得DE的长,即可得出点E的坐标.
解:(1)∵OB=4,OD=2
∴DB=2+4=6
∵CD⊥x轴, tan∠ABO=
∴OA=2,CD=3
∴A(0,2),B(4,0),C(-2,3)
设直线AB解析式为y=kx+b,则
解得
∴直线AB解析式为
设反比例函数解析式为,
得m=-2×3=-6
∴反比例函数解析式为
(2)∵△CDE与△COB的面积相等
∴
∴DE=OB=4
∴点E的坐标为(-6,0)或(2,0)
科目:初中数学 来源: 题型:
【题目】如图,矩形窗户边框ABCD由矩形AEFD,矩形BNME,矩形CFMN组成,其中AE:BE=1:3.已知制作一个窗户边框的材料的总长是6米,设BC=x(米),窗户边框ABCD的面积为S(米2)
(1)①用x的代数式表示AB;
②求x的取值范围.
(2)求当S达到最大时,AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求PD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点,点是抛物线的顶点.
(1)求抛物线的解析式.
(2)点是轴负半轴上的一点,且,点在对称轴右侧的抛物线上运动,连接,与抛物线的对称轴交于点,连接,当平分时,求点的坐标.
(3)直线交对称轴于点,是坐标平面内一点,请直接写出与全等时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.
(1)求该函数的表达式;
(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.
①求线段PQ的最大值;
②若以点P、C、Q为顶点的三角形与△ABC相似,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)经过点A(1,0)和点B(0,﹣2),且顶点在第三象限,记m=a﹣b+c,则m的取值范围是( )
A. ﹣1<m<0B. ﹣2<m<0C. ﹣4<m<﹣2D. ﹣4<m<0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm2.
(1)y与x之间的函数关系式;
(2)求自变量x的取值范围;
(3)四边形APQC的面积能否等于172mm2.若能,求出运动的时间;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为
A、2 B、2.5或3.5 C、3.5或4.5 D、2或3.5或4.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,矩形ABCD,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发沿折线A-B-C向点C运动,同时点Q以lcm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动.
(1)问两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的;
(2)问两动点经过多长时间使得点P与点Q之间的距离为?若存在,
求出运动所需的时间;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com