【题目】(1)发现:如图,点是线段上的一点,分别以为边向外作等边三角形和等边三角形,连接,,相交于点.
①线段与的数量关系为:___________;的度数为__________.
②可看作经过怎样的变换得到的?____________________________.
(2)应用:如图,若点不在一条直线上,(1)的结论①还成立吗?请说明理由;
(3)拓展:在四边形中,,,,若,,请直接写出,两点之间的距离.
【答案】(1)①,;(2)依然成立,见解析;(3).
【解析】
(1)①证明△ABE≌△CBD,根据全等三角形的性质即可求出线段与的数量关系;根据三角形外角的性质即可求出的度数.
②根据旋转的性质即可求解.
(2)根据(1)①中的步骤进行证明即可.
(3)
解:(1)①∵△ABC和△BDE都是等边三角形,
∴AB=CB,EB=ED,
∴∠ABC+∠CBE=∠DBE+∠CBE,
即∠ABE=∠CBD,
在△ABE和△CBD中,
∴△ABE≌△CBD(SAS),
∴AE=CD,∠BAE=∠BCD,
由三角形的外角性质,∠AOC=∠BAE+∠BDC=∠BCD+∠BDC,
∠ABC=∠BCD+∠BDC,
∴∠AOC=∠ABC=;
故答案为:;.
②可看作由绕点顺时针旋转得到的(或可看作由绕点逆时针旋转得到)
(2)依然成立,理由如下:
∵和均是等边三角形,
∴,,,
∴,
即
在和中,
∵,,,
∴
∴.
设与交于点
∵,
∴
在和中,其内角和均为
∵,
∴
(3)将绕点顺时针旋转得到,
根据旋转的性质可得:
科目:初中数学 来源: 题型:
【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对
他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=[])
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.
(1)如图①,点在小正方形格点上,在图①中作出点关于直线的对称点,连接、、、,并直接写出四边形的周长;
(2)在图②中画出一个以线段为一条对角线、面积为15的菱形,且点和点均在小正方形的顶点上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b经过点A(-5,0),B(-1,4)
(1)求直线AB的表达式;
(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,且AB =6,C是⊙O上一点,D是的中点,过点D作⊙O的切线,与AB、AC的延长线分别交于点E、F,连接AD.
(l)求证:AF⊥EF;
(2)填空:
①当BE= 时,点C是AF的中点;
②当BE= 时,四边形OBDC是菱形,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1=∠2,AB=AD,点E在边BC上,∠C=∠AED,AB与DE交于点O.
(1)求证:△ABC≌△ADE;
(2)当∠1=40°时,求∠BED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需要将方向调整到与出发时一致,则方向的调整应为( )
A.左转80°B.右转80°C.左转100°D.右转100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3,DF=1,求四边形DBEC面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com