【题目】某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:
数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):
30 | 60 | 81 | 50 | 40 | 110 | 130 | 146 | 90 | 100 |
60 | 81 | 120 | 140 | 70 | 81 | 10 | 20 | 100 | 81 |
整理数据:按如下分段整理样本数据并补全表格:
课外阅读时间x(min) | 0≤x<40 | 40≤x<80 | 80≤x<120 | 120≤x<160 |
等级 | D | C | B | A |
人数 | 3 | ____ | 8 | ____ |
分析数据:补全下列表格中的统计量:
平均数 | 中位数 | 众数 |
80 | ____ | ____ |
得出结论:
⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_____;
⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?
⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?
【答案】整理数据:5;4;分析数据:81;81;得出结论:(1)B;(2)160人;(3)13本.
【解析】
整理数据:从表格中的数据直接找出40≤x<80有5人,120≤x<160有4人;中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;众数:是一组数据中出现次数最多的数据;据此求出即可.
(1)根据分析数据统计显示,平均数是80 ,中位数与众数都是81,都是B等级,据此可估计该校学生每周用于课外阅读时间的情况等级为B.
(2)直接用400乘以B等级在样本中所占比列即得.
(3)根据题意选择样本平均数来估计.
解:整理数据:5;4.
分析数据:81;81.
得出结论:⑴B
⑵等级为“B”的学生有×400=160(人)
⑶以平均数来估计:×52=13,
∴假设平均阅读一本课外书的时间为320分钟,以样本的平均数来估计,该校学生每人一年(按52周计算)平均阅读13本课外书。
科目:初中数学 来源: 题型:
【题目】某大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D,点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当△CPQ与△BDC相似时,求t值;
(3) 设△CPQ的面积为y,求y与t的函数关系式,并判断△PCQ的面积是否有最大值还是最小值?若有,求出t为何值时y的最值,若没有,则说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,CD∥AB,∠ABC=90°,AB=BC,将△BCD绕点B逆时针旋转90°得到△BAE,连接CE,过点B作BG⊥CE于点F,交AD于点G.
(1)如图1,CD=AB.
①求证:四边形ABCD是正方形;
②求证:G是AD中点;
(2)如图2,若CD<AB,请判断G是否仍然是AD的中点?若是,请证明:若不是,请说理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7min同时到达C点,甲机器人前3分钟以a m/min的速度行走,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是____m,A、C两点之间的距离是____m,a=____m/min;
(2)求线段EF所在直线的函数解析式;
(3)设线段FG∥x轴.
①当3≤x≤4时,甲机器人的速度为____m/min;
②直接写出两机器人出发多长时间相距28m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知点A(﹣3,1),点B(0,5),过点A作直线l⊥AB,过点B作BD∥l,交x轴于点D,再以点B为圆心,BD长为半径作弧,交直线l于点C(点C位于第四象限),连结BC,CD.
(1)求线段AB的长.
(2)点M是线段BC上一点,且BM=CA,求DM的长.
(3)点M是线段BC上的动点.
①若点N是线段AC上的动点,且BM=CN,求DM+DN的最小值.
②若点N是射线AC上的动点,且BM=CN,求DM+DN的最小值(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
已知是比例三角形,,,请直接写出所有满足条件的AC的长;
如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.
如图2,在的条件下,当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E,连接AC,AE.
(1)若∠D=78°,求∠EAC的度数.
(2)若∠EAC=α,则∠B的度数为 (直接用含α的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com