【题目】如图,在平面直角坐标系中,反比例函数y= (x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
【答案】
(1)解:∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).
∴AB=CD=2,AD=BC=4,
∴B(2,4),C(6,4),D(6,6)
(2)解:A、C落在反比例函数的图象上,
设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),
∵A、C落在反比例函数的图象上,
∴k=2(6﹣x)=6(4﹣x),
x=3,
即矩形平移后A的坐标是(2,3),
代入反比例函数的解析式得:k=2×3=6,
即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=
【解析】(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.
【考点精析】解答此题的关键在于理解反比例函数的图象的相关知识,掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点.
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,连接AD,点E是AD的中点,连接BE并延长交CD于F点.
(1)请说明△ABE≌△DFE的理由;
(2)连接CB,AC,若CB⊥CD,AC=CD,∠D=30°,CD=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD被DE所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角;
(2)在(1)中,如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:
因为∠5=∠1( ),
∠5=∠3( ),
所以∠1=∠3( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.
(1)整数集合:{ …}
(2)非正数集合:{ …}
(3)正有理数集合:{ …}
(4)无理数集合:{ …}
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五张如图所示的长为,宽为的小长方形纸片,按如图的方式不重叠地放在矩形中,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为,当的长度变化时,按照同样的放置方式,始终保持不变,则,满足的关系式为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.
(1)求a、b的值.
(2)计算这道乘法题的正确结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】清明期间,苍南县政府大力倡导文明祭祖.龙港某花店设计了若干个甲、乙两种造型的花篮.一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成.一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.这些花篮一共用了2 900朵红花,4 000朵紫花,则黄花一共用了______ 朵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.
(1)求小张骑自行车的速度;
(2)求小张停留后再出发时y与x之间的函数表达式;
(3)求小张与小李相遇时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△AB C中,AB=AC,BD和CD分别是∠ABC和∠ACB的平分线,EF过D点,且EF∥BC,图中等腰三角形共有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com