精英家教网 > 初中数学 > 题目详情
7.求二元一次方程2x+3y=20的非负整数解.

分析 要求方程2x+3y=20的非负整数解,就要先将方程做适当变形,根据解为正整数确定其中一个未知数的取值范围,再分析解的情况.

解答 解:由已知得:x=10-$\frac{3}{2}$y
要使x,y都是非负整数,必须满足:10-$\frac{3}{2}$y≥0得0≤y≤$\frac{20}{3}$,
合适的y值只能是0,2,4,6.相应的x值为x=10,7,4,1.
所以有四组解,分别为x=10,y=0;x=7,y=2;x=4,y=4;x=1,y=6.

点评 本题是求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.某校在一次迎“六一”的活动中,学们要用彩纸折3000只纸鹤装饰礼堂,但在原定参加折纸鹤的同学中,有10名同学因为要排练节目而没有参加,这样折纸鹤的同学平均每人折的数量比原定的同学平均每人要完成的数量多15只,问原定共有多少同学要折纸鹤?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,四边形ABCD对角线交于点O,且O为AC中点,AE=CF,DF∥BE,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.一元一次方程a1x2-2x+1=0的两根分别为x1,x2,一元二次方程a2x2-2x+1=0的两根为x3,x4,若0<x1<x3<x4<x2,则a1,a2的大小关系为(  )
A.a1>a2B.a1=a2C.a1<a2D.大小无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.直线y=-$\frac{1}{2}$x+2与x轴,y轴分别交于A,B两点,在y轴上有点C(0,4),动点M从点A以每秒1个单位长度的速度沿x轴向左移动.
(1)求△COM的面积S与M的移动时间t之间的函数关系式;
(2)当t为何值时,△ABM是等腰三角形,并求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.有下列计算:①(m23=m6;②$\sqrt{4{a}^{2}-4a+1}$=2a-1;③m6÷m2=m3;④$\sqrt{27}$×$\sqrt{50}$$÷\sqrt{6}$=15;⑤$\sqrt{12}$-2$\sqrt{3}$+3$\sqrt{48}$=14$\sqrt{3}$,其中运算正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如果哥哥和弟弟的年龄分别为x岁、y岁,且x2+xy=99,求出哥哥、弟弟的年龄.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若(x+4)(x-5)=x2+mx+n,则m+n=(  )
A.21B.-21C.19D.-19

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称矩形,正方形;
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到ADBE,连接AD、DC,∠DCB=30°.求证:DC+BC=AC,即四边形ABCD是勾股四边形.
(4)如图,将△ABC绕顶点B按顺时针方向旋转α(0°<α<90°),连接AD、DC,得到ABCD,则∠DCB=$\frac{α}{2}$°,四边形ABCD是勾股四边形.

查看答案和解析>>

同步练习册答案