精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC是面积为的等边三角形,△ABC∽△ADEAB2AD∠BAD45°ACDE相交于点F,则△AEF的面积等于 (结果保留根号).

【答案】

【解析】

试题∵AB=2AD

=2

∵△ABC∽△ADE△ABC是面积为

=4

∴SADE=

∵△ABC∽△ADE△ABC是等边三角形,

∴△ADE也是等边三角形,其面积为AE2=

∴AE=1

FG⊥AEG

∵∠BAD=45°∠BAC=∠EAD=60°

∴∠EAF=45°

∴△AFG是等腰直角三角形,

AG=FG=h,在直角三角形FGE中,

∵∠E=60°EG=1﹣hFG=h

∴tan∠E=,即tan60°=,解得h=

∴SAEF=×1×=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点轴上运动,过点轴,交抛物线于点,交直线于点,设点的横坐标为

(Ⅰ)求抛物线的解析式和直线的解析式;

(Ⅱ)当点在线段上运动时,求线段的最大值;

(Ⅲ)当以为顶点的四边形是平行四边形时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接ADBC于点E,过点EEHABH.

(1)求证:HBE∽△ABC;

(2)若CF=4,BF=5,求ACEH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明将两个全等的等腰三角板摆放在一起,其中∠ACB=∠DFE=90°,ABDE=12.

(1)如图1,当DC点重合时,CFCE分别与AB交于MN两点,且量得AM=3,BN=4,小明发现AMMNBN存在某种数量关系,他想:当AMaBNbMNc时,这种数量关系仍成立吗?请你一起探究并证明这个结论;

(2)如图2,当等腰Rt△DEF的顶点D恰好在AB的中点处时,DEDF分别与ACBC交于MN,小明经测量后猜想,AMBN是一个定值.你认可他的猜想吗?说明理由,若猜想成立,请求出该定值.

(3)在(2)的条件下,△DEF绕点D旋转,DEDF所在的直线分别交线段AC和线段BC于点MN,若CN=2,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙OAC于点E,交BC于点D.求证:

1DBC的中点;

2△BEC∽△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子里装有红、黄、蓝三种颜色的球(除颜色以外,其余都相同),其中红球2个,黄球2个,从中随机摸出一个球是蓝色球的概率为

(1)求袋子里蓝色球的个数;

(2)甲、乙两人分别从袋中摸出一个球(不放回),求摸出的两个球中一个是红球一个是黄球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB 是⊙O 的直径,C 的中点,CEAB 于点 EBD CE 于点 F

(1)求证:CFBF

(2)若 CD=6,AC=8,求⊙O 的半径及 CE 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解方程

(1)2x2﹣5x﹣3=0

(2)(2x﹣5)2=4(2x﹣5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(m2xm1=0有两个相等的实数根,则m

值是

A. 0 B. 8 C. 4±2 D. 08

查看答案和解析>>

同步练习册答案