【题目】已知:如图所示,在△ABC中,∠C=90°,BC=5cm,AC=7cm. 两个动点P、Q分别从B、C两点同时出发,其中点P以1厘米/秒的速度沿着线段BC向点C运动,点Q以2厘米/秒的速度沿着线段CA向点A运动.
(1)P、Q两点在运动过程中,经过几秒后,△PCQ的面积等于4厘米2?经过几秒后PQ的长度等于5厘米?
(2)在P、Q两点在运动过程中,四边形ABPQ的面积能否等于11厘米2?试说明理由.
【答案】(1)经过1秒后,△PCQ的面积等于4厘米2;经过2秒后PQ的长度等于5厘米;(2)四边形ABPQ的面积不可能等于11厘米2.
【解析】
(1)若使其面积为4,即S△PCQ=PCQC=4,代入数据求解即可;根据勾股定理可得方程,即可求出t的值;
(2)若四边形ABPQ的面积能否等于11,即S△PCQ=-11=,建立方程,解方程看是否有解,若有,则存在.
(1)(i)设经过x秒后,△PCQ的面积等于4厘米2,此时,PC=5-x,CQ=2x.
由题意,得 ,整理,得x2-5x+4=0. 解得x1=1,x2=4.
当x=4时,2x=8>7,此时点Q越过A点,不合题意,舍去.
即经过1秒后,△PCQ的面积等于4厘米2.
(ii)设经过t秒后PQ的长度等于5厘米. 由勾股定理,得(5-t)2+(2t)2=52 .
整理,得t2-2t=0. 解得t1=2,t2=0(不合题意,舍去).
答:经过2秒后PQ的长度等于5厘米.
(2)设经过m秒后,四边形ABPQ的面积等于11厘米2.由题意,得.整理,得m2-5m+6.5=0.
∵△=(-5)2-4×6.5=-1<0, ∴方程没有实数根.
即四边形ABPQ的面积不可能等于11厘米2.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,点E是BC边的中点,动点M在CD边上运动,以EM为折痕将△CEM折叠得到△PEM,联接PA,若AB=4,∠BAD=60°,则PA的最小值是( )
A. B. 2 C. 2﹣2 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:
如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.
(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);
(2)∠ACB 与∠ABC的数量关系为:___________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线,直线和直线、交于点C和D,点P是直线上一动点.
(1)如图,当点P在线段CD上运动时,,,之间存在什么数量关系?请你猜想结论并说明理由.
(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合),上述(1)中的结论是否还成立?若不成立,请直接写出,,之间的数量关系,不必写理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:对称轴的抛物线与轴相交于,两点,其中点的坐标为,且点在抛物线上.
求抛物线的解析式.
点为抛物线与轴的交点.
①点在抛物线上,且,求点点坐标.
②设点是线段上的动点,作轴交抛物线于点,求线段长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,则α取值范围是( )
A. 36°45° B. 45°54° C. 54°72° D. 72°90°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数的图象与轴正半轴交于点.
求证:该二次函数的图象与轴必有两个交点;
设该二次函数的图象与轴的两个交点中右侧的交点为点,若,将直线向下平移个单位得到直线,求直线的解析式;
在的条件下,设为二次函数图象上的一个动点,当时,点关于轴的对称点都在直线的下方,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com