精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy如图,已知抛物线,经过点

求此抛物线顶点C的坐标;

联结ACy轴于点D,联结BDBC,过点C,垂足为点H,抛物线对称轴交x轴于G,联结HG,求HG的长.

【答案】(1) (2)

【解析】试题分析:(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.
(2)本题介绍三种解法:
方法一:分别求直线AC的解析式和BD的解析式,直线AC:y=-x-1,直线BD:y=x-1,可得D和P的坐标,证明△BPG∽△CPH和△HPG∽△CPB,列比例式可得HG的长;
方法二:如图2,过点H作HM⊥CG于M,先根据勾股定理的逆定理证明∠BCD=90°,利用面积法求CH的长,再证明△OBD∽△MCH,列比例式可得CM的长,从而可得结论;
方法三:直线AC:y=-x-1,求CH和BD的解析式,联立方程组可得H的坐标,由勾股定理可得GH的长.

试题解析:

代入抛物线解析式,

得: ,解得:

抛物线的解析式为:

顶点

方法一:设BDCG相交于点P

设直线AC的解析式为:

代入得:

解得:

则直线AC

同理可得直线BD

方法二:如图2,过点HM

由勾股定理得:

方法三:直线AC

直线BD

直线CH

联立解析式: ,解得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明有5张写着不同数字的卡片,请你按要求抽出卡片,完成下列问题:

(1)从中2张卡片,使这2张卡片上数字的乘积最大,如何抽取,最大值是多少?

(2)从中抽取2张卡片,使这两张卡片数相除的商最小,如何抽取,最小值是多少?

(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子.(要写出两种运算式)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列两个等式:22×+155×+1,给出定义如下

我们称使等式abab+1成立的一对有理数“ab”为共生有理数对”,记为(ab

1)通过计算判断数对“﹣21”,“4”是不是“共生有理数对”;

2)若(6a)是“共生有理数对”,求a的值;

3)若(mn)是“共生有理数对”,则“﹣n,﹣m   “共生有理数对”(填“是”或“不是”),并说明理由;

4)若(mn)是共生有理数对(其中n1),直接用含n的代数式表示m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形的顶点C与原点O重合,点By轴的正半轴上,点A在反比例函数的图象上,点D的坐标为.将菱形ABCD沿x轴正方向平移____个单位,可以使菱形的另一个顶点恰好落在该函数图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进冰箱、彩电进行销售.相关信息如下表:

进价(元/台)

售价(元/台)

冰箱

2500

彩电

2000

1)若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.

2)为了满足市场需要求,商场决定用不超过9万元采购冰箱、彩电共50台,且冰箱的数量不少于彩电数量的

该商场有哪几种进货方式?

若该商场将购进的冰箱、彩电全部售出,获得的最大利润为w元,请用所学的函数知识求出w的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

1) -11-7-8+62)(-0.6)+1.7+(+0.6)+(-1.7 )-9

(3) (4)

(5) (6)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种油菜籽在相同条件下的发芽实验结果如表:

1a b

2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;

3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组对角是直角的四边形叫做“准矩形”;有两组邻边(不重复)相等的四边形叫做“准菱形”.如图①,在四边形ABCD中,若∠A=∠C90°,则四边形ABCD是“准矩形”;如图②,在四边形ABCD中,若ABADBCDC,则四边形ABCD是“准菱形”.

1)如图,在边长为1的正方形网格中,ABC在格点(小正方形的顶点)上,请分别在图③、图④中画出“准矩形”ABCD和“准菱形”ABCD′.(要求:DD′在格点上);

2)下列说法正确的有 ;(填写所有正确结论的序号)

一组对边平行的“准矩形”是矩形;一组对边相等的“准矩形”是矩形;

一组对边相等的“准菱形”是菱形;一组对边平行的“准菱形”是菱形.

3)如图,在△ABC中,∠ABC90°,以AC为一边向外作“准菱形”ACEF,且ACECAFEFAECF交于点D

若∠ACE=∠AFE,求证:“准菱形”ACEF是菱形;

的条件下,连接BD,若BD,∠ACB15°,∠ACD30°,请直接写出四边形ACEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中只装有2个白色围棋子和1个黑色围棋子,围棋子除颜色外其余均相同.从这个盒子中随机地摸出1个围棋子,记下颜色后放回,搅匀后再随机地摸出1个围棋子记下颜色.请用画树状图(或列表)的方法,求两次摸出的围棋子颜色都是白色的概率.

查看答案和解析>>

同步练习册答案