【题目】如图,足球场上守门员徐杨在O处抛出一高球,球从离地面1m处的点A飞出,其飞行的最大高度是4m,最高处距离飞出点的水平距离是6m,且飞行的路线是抛物线一部分.以点O为坐标原点,竖直向上的方向为y轴的正方向,球飞行的水平方向为x轴的正方向建立坐标系,并把球看成一个点.(参考数据:4≈7)
(1)求足球的飞行高度y(m)与飞行水平距离x(m)之间的函数关系式;
(2)在没有队员干扰的情况下,球飞行的最远水平距离是多少?(精确到个位)
(3)若对方一名1.7m的队员在距落点C 3m的点H处,跃起0.3m进行拦截,则这名队员能拦到球吗?
【答案】(1)y=﹣(x﹣6)2+4;(2)球飞行的最远水平距离是13米;(3)这名队员不能拦到球,理由见解析
【解析】
(1)设函数为顶点式,再把(0,1)代入即可求解;
(2)令y=0即可求出x;
(3)把x=13﹣3=10,代入解析式求出y,再跟1.7+0.3进行比较即可判断.
(1)当h=4时,y=a(x﹣6)2+4,又A(0,1)
∴1=a(0﹣6)2+4,
∴a=﹣,
∴y=﹣(x﹣6)2+4;
(2)令y=0,则0=﹣(x﹣6)2+4,解得:x1=4+6≈13,x2=﹣4+6<0(舍去)
∴球飞行的最远水平距离是13米;
(3)当x=13﹣3=10时,y=﹣(10﹣6)2+4=>1.7+0.3=2,
∴这名队员不能拦到球.
科目:初中数学 来源: 题型:
【题目】小明想用镜子测量一棵松树的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A;第二次把镜子放在D点,人在G点正好看到树尖A.已知小明的眼睛距离地面1.70m,量得CD=12m,CF=1.8m,DH=3.8m.请你求出松树的高.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD和四边形CEFG都是正方形,且AB>CE
(1) 如图1,连接BG、DE,求证:BG=DE
(2) 如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD
① 求∠BDE的度数
② 若正方形ABCD的边长是,请直接写出正方形CEFG的边长____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题.
(1)请写出y与x的函数关系式;
(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】y=x2+(1﹣a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是( )
A. a≤﹣5B. a≥5C. a=7D. a≥7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.
(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?
(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了a%(a>0),月均销量比(1)中最低月均销量800个增加了5a%,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如图l,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1是________;
(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,那么第2个正方形DGHI的边长记为a2;继续在图2中的△HGA中按上述方法作第3个内接正方形……以此类推,则第n个内接正方形的边长an=____. (n为正整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点B的坐标及△AOB的面积;
(3)观察图象直接写出使反比例函数值小于一次函数值的自变量x取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
(1)求与之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com