精英家教网 > 初中数学 > 题目详情

【题目】如图AB是半圆O的直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下5个结论:①OD∥AC;②AC=2CD;③2CD2=CEAB;④SAEC=2SDEO;⑤线段ODDEDA的比例中项.其中正确结论的序号( )

A. ①②③ B. ①④⑤ C. ①③④ D. ①③④⑤

【答案】C

【解析】

根据“圆的相关性质和相似三角形的判定与性质”结合已知条件进行分析判断即可.

(1)∵AD平均∠CAB,

∴∠CAD=∠BAD,

∵OA=OD,

∴∠BAD=∠ADO,

∴∠CAD=∠ADO,

∴OD∥AC,即结论成立

(2)连接BC,∵OC⊥AB,

∴AC=BC,

∵AD平均∠BAC,

D的中点,

∴CD=BD,

△BCD,CD+BD>BC,

∴2CD>BC,

∴2CD>AC,即结论不成立

(3)∵OC⊥AB,

∴∠AOC=∠BOC=90°,

∴∠CDE=∠AOC=45°,

D的中点,

∴∠COD=∠BOC=45°,

∴∠CDE=∠COD,

∵∠DCE=∠OCD,

∴△CDE∽△COD,

∴CD:CO=CE:CD,

∴CD2=CE·CO,

∵CO=AO=AB,

∴CD2=CE·AB,

∴2CD2=CE·AB,即结论成立

(4)∵AC∥OD,

∴△ACE∽△DOE,

∴SACE:SDOE=

∵△AOC,∠AOC=90°,OA=OC,

∴AC:OC=

∴SACE:SDOE=2:1,

∴SACE=2SDOE即结论成立

(5)∵在△AOD中,AO=DO,∠AOD=∠AOC+∠COD=135°,

∴∠OAD=∠ODA=22.5°,

△DOE,∠DOE=45°,∠ODE=22.5°,

∴∠DEO=180°-45°-22.5°=112.5°,

由此可知△AOD是等腰三角形△DOE不是等腰三角形

∴△AOD△OED不可能相似

无法证明ODADDE的比例中项,即结论不成立.

综上所述上述5个结论中,成立的是①③④.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数的图像如图所示,下列结论正确是( )

A. B. C. D. 有两个不相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB30,∠AOB 内有一定点 P,且 OP12,在 OA 上有一动点 QOB 上有 一动点 R。若PQR 周长最小,则最小周长是( )

A. 6 B. 12 C. 16 D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求画图,并解答问题

1)如图,取BC边的中点D,画射线AD

2)分别过点BCBEAD于点ECFAD于点F

3BECF的位置关系是   ;通过度量猜想BECF的数量关系是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线ABCD相交于点OEOCDO

1)若∠AOC=36°,求∠BOE的度数;

2)若∠BOD:∠BOC=15,求∠AOE的度数;

3)在(2)的条件下,请你过点O画直线MNAB,并在直线MN上取一点F(点FO不重合),然后直接写出∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2bxc的图象如图所示,有以下结论:①abc>0;②abc>1;③abc>0;④4a-2bc<1;⑤b+2a=0. 其中所有正确的结论是______.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.

(1)求a、b、c的值;

(2)若线段x是线段a、b的比例中项,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,EAD的中点,延长CEBA交于点F,连接ACDF

(1)求证:四边形ACDF是平行四边形;

(2)当CF平分∠BCD时,写出BCCD的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1

……

(1)猜想(x-1)(xn+xn-1+xn-2+…+x+1)=______

运用上述规律,试求:

(2)219+218+217+…+23+22+2+1

(3)52018+52017+52016+…+53+52+5+1

查看答案和解析>>

同步练习册答案