【题目】观察下列等式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1;
……
(1)猜想(x-1)(xn+xn-1+xn-2+…+x+1)=______.
运用上述规律,试求:
(2)219+218+217+…+23+22+2+1.
(3)52018+52017+52016+…+53+52+5+1.
【答案】(1)xn+1-1;(2)220-1;(3)(52019-1).
【解析】
(1)根据已知算式得出的规律求出即可;
(2)先变形,再根据已知算式得出的规律求出即可;
(3)先变形,再根据已知算式得出的规律求出即可.
解:(1)(x-1)(xn+xn-1+xn-2+…+x+1)=xn+1-1,
故答案为:xn+1-1;
(2)219+218+217+…+23+22+2+1
=(2-1)×(219+218+217+…+23+22+2+1)
=220-1;
(3)52018+52017+52016+…+53+52+5+1
=(5-1)×(52018+52017+52016+…+53+52+5+1)×
=(52019-1).
科目:初中数学 来源: 题型:
【题目】如图AB是半圆O的直径,半径OC⊥AB于点O,AD平分∠CAB分别交OC于点E,交弧BC于点D,连结CD、OD,给出以下5个结论:①OD∥AC;②AC=2CD;③2CD2=CEAB;④S△AEC=2S△DEO;⑤线段OD是DE与DA的比例中项.其中正确结论的序号( )
A. ①②③ B. ①④⑤ C. ①③④ D. ①③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线L:y=3x+2,现有下列命题:
①过点P(-1,1)与直线L平行的直线是y=3x+4;②若直线L与x轴、y轴分别交于A、B两点,则AB=;③若点M(-,1),N(a,b)都在直线L上,且a>-,则b>1; ④若点Q到两坐标轴的距离相等,且Q在L上,则点Q在第一或第二象限。其中正确的命题是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)平面上有四个点A,B,C,D,按照以下要求作图:
①作直线AD;
②作射线CB交直线AD于点E;
③连接AC,BD交于点F;
(2)图中共有 条线段;
(3)若图中F是AC的一个三等分点,AF<FC,已知线段AC上所有线段之和为18,求AF长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理探索:(1)数轴上点、、、、 分别表示数0、 2 、3、5、 4 ,解答下列问题.
①画出数轴表示出点、、、、;
②、两点之间的距离是 ;
③、 两点之间的距离是 ;
④、 两点之间的距离是 ;
(2)请思考,若点表示数 且,点 表示数,且 ,则用含 , 的代数式表示 、两点 间的距离是 ;
(3)请归纳,若点 表示数,点 表示数,则 、 两点间的距离用含、的代数式表示是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在正方形ABCD中,对角线AC与BD相交于点O,OE∥AB交BC于点E.若AD=8cm,则OE的长为( )
A. 3cm B. 4cm C. 6cm D. 8cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请结合图形完成下列推理过程:
(1)∵∠2+∠4=180°,
∴DE∥AC (______).
(2)∵∠1=∠C,
∴DE∥______(______).
(3)∵AB∥DF,
∴∠2=∠______(______).
(4)∵______∥______,
∴∠B=∠3 (______).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com