【题目】如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).
(1)直接写出这两个二次函数的表达式;
(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标
【答案】(1)y1=﹣x2+1,y2=3x2﹣3;(2)存在,理由见解析;(3)(0,﹣)或(,﹣1)或(1,﹣)或(﹣,﹣2).
【解析】(1)利用待定系数法即可得出结论;
(2)先确定出MM'=(1-m2)-(3m2-3)=4-4m2,进而建立方程2m=4-4m2,即可得出结论;
(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:
①如图1,当△DBC∽△DAE时,得出,进而求出DE=,即可得出E(0,-),
再判断出△DEF∽△DAO,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;
②如图2,当△DBC∽△ADE时,得出,求出AE=,
当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出,即可得出点E坐标,当E'在直线DA右侧时,即可得出结论.
(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,
∴,
∴,
∴二次函数解析式为y1=-x2+1,
∵点A(1,0),D(0,-3)在二次函数y2=ax2+b(a>0)的图象上,
∴,
∴,
∴二次函数y2=3x2-3;
(2)设M(m,-m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2-3)为第四象限的图形上一点,
∴MM'=(1-m2)-(3m2-3)=4-4m2,
由抛物线的对称性知,若有内接正方形,
∴2m=4-4m2,
∴m=或m=(舍),
∵0<<1,
∴存在内接正方形,此时其边长为;
(3)在Rt△AOD中,OA=1,OD=3,
∴AD=,
同理:CD=,
在Rt△BOC中,OB=OC=1,
∴BC=,
①如图1,当△DBC∽△DAE时,
∵∠CDB=∠ADO,
∴在y轴上存在E,由,
∴,
∴DE=,
∵D(0,-3),
∴E(0,-),
由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',
连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,
∵E,E'关于DA对称,
∴DF垂直平分EE',
∴△DEF∽△DAO,
∴,
∴,
∴DF=,EF=,
∵S△DEE'=DEE'M=EF×DF=,
∴E'M=,
∵DE'=DE=,
在Rt△DE'M中,DM=,
∴OM=1,
∴E'(,-1),
②如图2,
当△DBC∽△ADE时,有∠BDC=∠DAE,,
∴,
∴AE=,
当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,
∵∠BDC=∠DAE=∠ODA,
∴PD=PA,
设PD=n,
∴PO=3-n,PA=n,
在Rt△AOP中,PA2=OA2+OP2,
∴n2=(3-n)2+1,
∴n=,
∴PA=,PO=,
∵AE=,
∴PE=,
在AEQ中,OP∥EQ,
∴,
∴OQ=,
∵,
∴QE=2,
∴E(-,-2),
当E'在直线DA右侧时,
根据勾股定理得,AE=,
∴AE'=
∵∠DAE'=∠BDC,∠BDC=∠BDA,
∴∠BDA=∠DAE',
∴AE'∥OD,
∴E'(1,-),
综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,
即:(0,-)或(,-1)或(1,-)或(-,-2).
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30,∠AOB 内有一定点 P,且 OP=12,在 OA 上有一动点 Q,OB 上有 一动点 R。若△PQR 周长最小,则最小周长是( )
A. 6 B. 12 C. 16 D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.
(1)求a、b、c的值;
(2)若线段x是线段a、b的比例中项,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请认真阅读下面材料:如果 ()的b次幂等于N,即有指数式,那么数b叫做以为底N的对数,
记作:对数式:
例如:
(1)因为指数式,所以以2为底,4的对数是2,对数式记作:
(2)因为指数式,所以以4为底,16的对数是2,对数式记作:
1. 请根据上面阅读材料将下列指数式改为对数试:(1) ;(2)
2. 将下列对数式改为指数式:(1);(2)
3.计算 :
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,李强在教学楼的点P处观察对面的办公大楼,为了求得对面办公大楼的高度,李强测得办公大楼顶部点A的仰角为30°,测得办公大楼底部点B的俯角为37°,已知测量点P到对面办公大楼上部AD的距离PM为30m,办公大楼平台CD=10m.求办公大楼的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
(x-1)(x4+x3+x2+x+1)=x5-1;
……
(1)猜想(x-1)(xn+xn-1+xn-2+…+x+1)=______.
运用上述规律,试求:
(2)219+218+217+…+23+22+2+1.
(3)52018+52017+52016+…+53+52+5+1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】发现(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,请你判断∠1+∠2与∠A有何数量关系,直接写出你的结论,不必说明理由
思考(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=100°,求∠BIC的度数;
拓展(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com