精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,CE⊥AB于点E,点D在BC上,∠BED=∠A,CE平分∠ACB,DF平分∠BDE,求证:DF⊥AB.
考点:平行线的判定与性质,垂线
专题:证明题
分析:可先证明AC∥DE,结合平行线的性质可得到∠ACB=∠EDB,再利用角平分线的定义可证得∠BDF=∠BCE,可判定CE∥DF,可得到∠DFB=∠CEF,可证得结论.
解答:证明:
∵∠BED=∠A,
∴AC∥DE,
∴∠ACB=∠BDE,
∵CE平分∠ACB,DF平分∠BDE,
∴∠BDF=
1
2
∠BDE,∠BCE=
1
2
∠ACB,
∴∠BDF=∠BCE,
∴DF∥CE,
∵CE⊥AB,
∴∠BFD=∠BEC=90°,
∴DF⊥AB.
点评:本题主要考查平行线的性质和判定,掌握两直线平行的性质和判定是解题的关键,即①同位角相等?两直线平行,②内错角相等?两直线平行,③同旁内角互补?两直线平行.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在?ABCD中,AC、BD相交于点O,点E、F分别在OB、OD上,且OE=OF.求证:四边形AECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

若已知分式
|x-2|-1
x2-6x+9
的值为0,则x-2的平方根为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,B的坐标分别为(-4,3),(2,-1).
(1)请在图中作出平面直角坐标系并写出点C的坐标;
(2)请作出将△ABC向下平移2个单位长度,再向右平移3个单位长度后的
△A′B′C′;并写出点C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,两个圆的圆心相同,它们的面积分别是12.56和25.12,求圆环的宽度d(π取3.14,结果保留小数点后两位).

查看答案和解析>>

科目:初中数学 来源: 题型:

在等腰三角形ABC中,a、b、c是三边的长,a=5,若关于x的方程x2+(b+2)x+(6-b)=0有两个相等的实数根,试求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
(1)-(a42•(a23
(2)|3-
3
|-
16
+(
1
3
)0

(3)(x-y)2-(x+y)(x-y)
(4)2006×2008-20072

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y1=2x+2与y轴交于A点,与反比例函数y2=
k
x
函数(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求点M的坐标与k的值;
(2)直接写出使y2>y1成立的自变量取值范围;
(3)点N(a,1)是反比例函数y2=
k
x
(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

以萝卜或马铃薯为主要材料,制作下列两组三视图所表示的几何体的立体模型,并画出你制作的这个模型.

查看答案和解析>>

同步练习册答案