精英家教网 > 初中数学 > 题目详情

【题目】空中的气温与距地面的高度有关,某地面气温为,且已知离地面距离每升高,气温下降

1)在这个变化过程中, 是自变量, 是因变量;

2)写出该地空中气温与高度之间的关系式;

3)求空中气温为处距地面的高度.

【答案】1)高度,气温;(2;(3

【解析】

1)根据因变量随着自变量的变化而变化,直接写出自变量,因变量即可;

2)由地面气温26℃减去高度为h时下降的气温即可;

3)把T=-6℃代入(2)求解即可.

1)根据题意可知,在这个变化过程中,高度是自变量,气温是因变量,

故答案为:高度;气温;

2)由题意知,该地空中气温T=26-4h

故答案为:T=26-4h

3)当T=-6℃时,则

26-4h=-6

解得:h=8

答:空中气温为处距地面的高度为8km

故答案为:8km

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.

(1).请用两种不同的方法表示图中阴影部分的面积.

方法①:

方法②:

(2). (1)可得出2 ,4mn这三个代数式之间的一个等量关系为:

(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab=4,试求的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.

(1)求购进甲、乙两种花卉,每盆各需多少元?

(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;

(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ADE+BCF180°BE平分∠ABC,∠ABC2E

1ADBC平行吗?请说明理由;

2ABEF的位置关系如何?为什么?

3)若AF平分∠BAD,试说明:

①∠BAD2F;②∠E+F90°

注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.

解:(1ADBC.理由如下:

∵∠ADE+ADF180°,(平角的定义)

ADE+BCF180°,(已知)

∴∠ADF=∠________,(________

ADBC

2ABEF的位置关系是:________

BE平分∠ABC,(已知)

∴∠ABEABC.(角平分线的定义)

又∵∠ABC2E,(已知),

即∠EABC

∴∠E=∠________.(________

________________.(________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数abc满足ababc,有下列结论:

c≠0,则a3,则bc9

abc,则abc0abc中只有两个数相等,则abc8

其中正确的是 (把所有正确结论的序号都选上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中.

1)如图1PQBC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;

2)点PQBC边上的两个动点(不与BC重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AMPM

①依题意将图2补全;

②求证:PA=PM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,A﹣3﹣2)、B﹣1﹣4

1)直接写出:SOAB=      

2)延长ABy轴于P点,求P点坐标;

3Q点在y轴上,以ABOQ为顶点的四边形面积为6,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的面积为1.第一次操作:分别延长ABBCCA至点A1B1C1,使A1B=ABB1C=BCC1A=CA,顺次连接A1B1C1,得到A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2,使A2B1=A1B1 B2C1=B1C1C2A1=C1A1,顺次连接A2B2C2,得到A2B2C2按此规律,要使得到的三角形的面积超过2017,最少经过多少次操作 ( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1的小正方形组成的方格纸中,称小正方形的顶点为格点,顶点全在格点上的多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S2N0L6

1)图中格点多边形DEFGHI所对应的S   N   L   

2)经探究发现,任意格点多边形的面积S可表示为SaN+bL1,其中ab为常数

①试求ab的值.(提示:列方程组)

②求当N5L14时,S的值.

查看答案和解析>>

同步练习册答案