【题目】如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.
(1)如图2,在△ABC中,∠B>∠C,若经过两次折叠,∠BAC是△ABC的好角,则∠B与∠C的等量关系是_______;
(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。
【答案】 140°、120°或80°
【解析】
(1)根据折叠性质可得∠A1B1B2=∠C,∠AA1B1=∠B,由三角形外角性质可得∠AA1B1=2∠C,根据等量代换可得∠B=2∠C;(2)先求出经过三次折叠,∠BAC是△ABC的好角时,∠B与∠C的等量关系为∠B=3∠C,进而可得经过n次折叠,∠BAC是△ABC的好角时∠B与∠C的等量关系为∠B=n∠C,因为最小角是20,是△ABC的好角,根据好角定义,设另两角分别为20m,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m、n都是正整数可得m与n+1是8的整数因子,从而可以求得结果.
(1)根据折叠性质得∠B=∠AA1B1,∠A1B1B2=∠C,
∵∠AA1B1=∠A1B1B2+∠C,
∴∠B=2∠C
故答案为:∠B=2∠C
(2)如图:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1B1C=∠A1A2B2,
∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1B1C=∠BAC+2∠B-2∠C=180°,
根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;
故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;
∵最小角为20°,
∴设另两个角为20m°和20mn°,
∴20°+20m°+20mn°=180°,即m(1+n)=8,
∵m、n为整数,
∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.
解得:m=1,n=7;m=2,n=3,m=4,n=1,
∴另两个角为20°、140°或40°、120°或80°、80°,
∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.
故答案为:140°、120°或80°
科目:初中数学 来源: 题型:
【题目】如图,现有5张写着不同数字的卡片,请按要求完成下列问题:
若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______.
若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______.
若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】母亲节,是一个感谢母亲的节日,这个节日最早出现在古希腊;而现代的母亲节起源于美国,我国将母亲节定于每年5月的第二个星期日.今年为了在全校进行感恩母亲的宣传,某班通过问卷调查的形式,对2018年5月13日“母亲节”期间,本班全体学生对母亲表达感恩的方式进行调查统计,结果绘制如图:
(1)这个班级共有多少名学生?
(2)扇形统计图中,“帮母亲做家务”所在扇形的圆心角的度数是多少?
(3)补全条形统计图;
(4)若该校有学生1500人,估计该校有多少名学生通过“给母亲一个爱的拥抱”来表达感恩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校的平面示意图如图所示,实验楼所在位置的坐标为(-2,-3),教学楼所在位置的坐标为(-1,2),
(1)请确定图书馆所在位置的坐标.
(2)某人在校门位置,请用方向与距离的方法表示实验楼.
(3)连接图书馆与校门的线段向右平移5个单位,则平移后的线段上任意一点怎样表示?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=42°,则∠ABC=_____°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com