【题目】如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.
(1)求证:△AED≌△CFB;
(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.
【答案】(1)证明见解析;(2)四边形ABCD是矩形,理由见解析.
【解析】
试题分析:(1)根据两直线平行,内错角相等可得∠E=∠F,再利用“角角边”证明△AED和△CFB全等即可;
(2)根据全等三角形对应边相等可得AD=BC,∠DAE=∠BCF,再求出∠DAC=∠BCA,然后根据内错角相等,两直线平行可得AD∥BC,再根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形解答.
(1)证明:∵DE∥BF,
∴∠E=∠F,
在△AED和△CFB中,
,
∴△AED≌△CFB(AAS);
(2)解:四边形ABCD是矩形.
理由如下:∵△AED≌△CFB,
∴AD=BC,∠DAE=∠BCF,
∴∠DAC=∠BCA,
∴AD∥BC,
∴四边形ABCD是平行四边形,
又∵AD⊥CD,
∴四边形ABCD是矩形.
科目:初中数学 来源: 题型:
【题目】指出下列命题的条件和结论.
(1)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3.
(3)锐角小于它的余角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 过一点有且只有一条直线与已知直线平行
B. 相等的角是对顶角
C. 两条直线被第三条直线所截,同旁内角互补
D. 在同一平面内,垂直于同一直线的两条直线互相平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当多边形的边数每增加1时,它的内角和与外角和( )
A. 都增加180°
B. 都不变
C. 内角和增加180°,外角和不变
D. 内角和增加180°,外角和减少180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离。其中是真命题的个数有( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com