精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形OABC的边长为4,对角线相交于点P,顶点A,C分别在x轴,y轴的正半轴上,抛物线L经过O,P,A三点,点E是正方形内的抛物线上的动点.

(1)点P的坐标为
(2)求抛物线L的解析式;
(3)求△OAE与△OCE面积之和的最大值.

【答案】
(1)(2,2)
(2)解:设抛物线L的解析式为y=ax2+bx+c.

∵抛物线L经过O、P、A三点,

,解得:

∴抛物线L的解析式为y=﹣ +2x.


(3)解:∵点E是正方形内的抛物线上的动点,

∴设点E的坐标为(m,﹣ +2m)(0<m<4),

∴SOAE+SOCE= OAyE+ OCxE=﹣m2+4m+2m=﹣(m﹣3)2+9,

∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.


【解析】解:(1)∵OABC为正方形,且边长为4,对角线相交于点P,

∴点O的坐标为(0,0),点B的坐标为(4,4),点P为OB的中点,

∴点P的坐标为(2,2).

所以答案是:(2,2).

【考点精析】关于本题考查的二次函数的性质和三角形的面积,需要了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;三角形的面积=1/2×底×高才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的面积为16cm2,对交线交于点O;以AB、AO为邻边作平行四边AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,…;依此类推,则平行四边形AO4C5B的面积为( )

A. cm2 B. 1cm2 C. 2cm2 D. 4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.

(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格纸中,小正方形的顶点叫做格点,△ABC是一个格点三角形(即△ABC的三个顶点都在格点上),根据要求回答下列问题:

1)画出△ABC先向左平移6格,再向上平移1格所得的△ABC

2利用网格画出△ABCBC边上的高AD

3)过点A画直线l,将△ABC分成面积相等的两个三角形;

4)在直线AB的右侧格点图中标出所有格点E(不包括点C),使SABE=SABC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在中,是角平分线,是高,相交于点.求证:

(变式思考)如图2,在中,边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则还相等吗?说明理由;

(探究延伸)如图3,在中,上存在一点,使得的平分线于点.的外角的平分线所在直线的延长线交于点.直接写出的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于xy的方程组给出下列结论

是方程组的解;②无论a取何值xy的值都不可能互为相反数

a=1方程组的解也是方程x+y=4﹣a的解;④xy的都为自然数的解有4

其中正确的个数为(  

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点 A(-1,0)和点B(1,2) ,在 y 轴正半轴上确定点 P ,使得△ABP 为直角三角形,则满足条件的点 P 的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°, BC=12cm,半圆O以 2cm/s 的速度从左向右运动,在运动过程中,点 D 、E 始终在直线BC 上.设运动时间为t(s) ,当t=0s时,半圆O在△ABC的左侧,OC=8cm。

(1)当t =(s)时,⊙O与AC所在直线第一次相切,点 C 到直线 AB 的距离为
(2)当 t为何值时,直线 AB 与半圆O所在的圆相切;
(3)当△ABC的一边所在直线与圆O相切时,若⊙O与△ABC有重叠部分,求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请认真观察图形,解答下列问题:

1)根据图中条件,试用两种不同方法表示两个阴影图形的面积的和.

方法1

方法2

2)从中你能发现什么结论,请用等式表示出来:

3)利用(2)中结论解决下面的问题:若,求的值.

查看答案和解析>>

同步练习册答案