精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,对角线ACBD相交于点O,且AC=BDEF分别相交是ABCD的中点,EF分别交BDAC于点GH。求证:OG=OH

【答案】证明见解析.

【解析】试题分析::取BC边的中点M,连接EMFM,则根据三角形的中位线定理,即可证得△EMF是等腰三角形,根据等边对等角,即可证得∠MEF=∠MFE,然后根据平行线的性质证得∠OGH=∠OHG,根据等角对等边即可证得.

试题解析:∵MF分别是BCCD的中点,

∴MF∥BDMF=BD

同理:ME∥ACME=AC

∵AC=BD

∴ME=MF

∴∠MEF=∠MFE

∵MF∥BD

∴∠MFE=∠OGH

同理,∠MEF=∠OHG

∴∠OGH=∠OHG

∴OG=OH

考点: 三角形中位线定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,底边BC为2 ,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为(

A.2+2
B.2+
C.4
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、并三位同学参加数学综合素质测试各项成绩如下单位:分

同学

成绩

数与代数

图形与几何

统计与概率

综合与实践

90

93

89

90

94

92

94

86

92

91

90

88

甲、乙、丙三位同学成绩的中位数分别为______;

如果数与代数、图形与几何、统计与概率、综合与实践的成绩按3:3:2:2计算,分别计算甲、乙、丙三位同学的数学综合素质测试成绩,从成绩看,应推荐谁参加更高级别的比赛?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD⊥BCCE⊥ABAE=CE.求证:

1△AEF≌△CEB

2AF=2CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是( )

A.CE= DE
B.CE= DE
C.CE=3DE
D.CE=2DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0
(2)先化简,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】顺次连接菱形各边的中点所形成的四边形是(
A.等腰梯形
B.矩形
C.菱形
D.正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB‖ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

同步练习册答案