【题目】某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)
(1)求扇形统计图中交通监督所在扇形的圆心角度数;
(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)
(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
【答案】(1)97.2°;(2)D班选择环境保护的学生人数是15人;补全折线统计图见解析;(3)估计该校选择文明宣传的学生人数是950人.
【解析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;
(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;
(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.
(1)选择交通监督的人数是:12+15+13+14=54(人),
选择交通监督的百分比是:×100%=27%,
扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;
(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).
补全折线统计图如图所示;
(3)2500×(1﹣30%﹣27%﹣5%)=950(人),
即估计该校选择文明宣传的学生人数是950人.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.
(1)求抛物线的解析式;
(2)点P为直线AC上方抛物线上一动点;
①连接PO,交AC于点E,求的最大值;
②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线C:y=ax2﹣2ax+3与直线l:y=kx+b交于A,B两点,且点A在y轴上,点B在x轴的正半轴上.
(1)求点A的坐标;
(2)若a=﹣1,求直线l的解析式;
(3)若﹣3<k<﹣1,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ABC=90°,AB=BC=4,点D、E分别是边AB、AC的中点,连接DE,将△ADE绕点A按顺时针方向旋转,记旋转角为α,BD、CE所在直线相交所成的锐角为β.
(1)问题发现当α=0°时,=_____;β=_____°.
(2)拓展探究
试判断:当0°≤α<360°时,和β的大小有无变化?请仅就图2的情形给出证明.
(3)在△ADE旋转过程中,当DE∥AC时,直接写出此时△CBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,AB=6,BC=8,点P从A出发在线段AD上以1个单位/秒向点D运动,点Q同时从点C出发,以1个单位/秒的速度向点A运动,当点P到达点D时,点Q也随之停止运动.
(1)设△APQ的面积为S,点P的运行时间为t,求S与t的函数关系式;
(2)t取几时S的值最大,最大值是多少?
(3)当t为何值时,△APQ是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为( )
A. 10 B. 12 C. 16 D. 18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB=4,BC=4,∠D=30°,点E是BC边的中点,F是射线BA上一动点,将△BEF沿直线EF折叠,得到△PEF,连接PC,当△PCE为等边三角形时,BF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于点,与轴交于点,.
(1)求这个抛物线的解析式;
(2)将以每秒一个单位的速度沿轴向右平移,平移时间为秒,平移后的与重叠部分的面积为,与重合时停止平移,求与的函数关系式;
(3)点在轴上,连接,点关于直线的对称点为,若点落在这个抛物线的对称轴上,请直接写出所有符合条件的点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com