分析 (1)由抛物线的对称性可求得点A、B的坐标,然后代入解析式求得b、c的值即可;
(2)连接BC,交x=2与点P,然后求得可证明△APC的周长=AC+BC,最后求得BC、AC的长即可.
解答 解:(1)∵点A与点B关于x=2对称,AB=2,
∴点A的坐标为(1,0),点B的坐标为(3,0).
将点A、B的坐标代入得:$\left\{\begin{array}{l}{1+b+c=0}\\{9+3b+c=0}\end{array}\right.$
解得:$\left\{\begin{array}{l}{b=-4}\\{c=3}\end{array}\right.$.
∴抛物线的解析式为y=x2-4x+3.
(2))如图所示:连接BC交直线x=2与点P.![]()
将x=0代入抛物线的解析式得:y=3.
∴OC=3.
∵点A与点B关于x=2对称,
∴PA=PB.
∴△ACP的周长=AC+AP+CP=AC+PB+CP=AC+CB.
在Rt△AOC中,AC=$\sqrt{O{C}^{2}+O{A}^{2}}$=$\sqrt{10}$,在Rt△COB中,BC=$\sqrt{O{C}^{2}+O{B}^{2}}$=$\sqrt{{3}^{2}+{3}^{2}}$=3$\sqrt{2}$.
∴△ACP周长的最小值3$\sqrt{2}$+$\sqrt{10}$.
点评 本题主要考查的是二次函数的图象和性质、轴对称-路径最短问题,明确点C、P、B在一条直线上时,△ACP的周长有最小值是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=x2-4x+7 | B. | y=x2+4x-1 | C. | y=x2-4x+9 | D. | y=x2+4x-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4元 | B. | 6元 | C. | 4元或6元 | D. | 5元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com