精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+bx+cx轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点Dx轴的垂线,垂足为E,连接DB.

(1)求此抛物线的解析式及顶点D的坐标;

(2)M是抛物线上的动点,设点M的横坐标为m.

∠MBA=∠BDE时,求点M的坐标;

过点MMN∥x轴,与抛物线交于点N,Px轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

【答案】(1)(1,4)(2)①点M坐标(﹣)或(﹣,﹣);②m的值为

【解析】

(1)利用待定系数法即可解决问题;

(2)①根据tanMBA=,tanBDE==,由∠MBA=BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.

(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,

得到,解得

∴抛物线的解析式为y=﹣x2+2x+3,

y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,

∴顶点D坐标(1,4);

(2)①作MGx轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

MG=|﹣m2+2m+3|,BG=3﹣m,

tanMBA=

DEx轴,D(1,4),

∴∠DEB=90°,DE=4,OE=1,

B(3,0),

BE=2,

tanBDE==

∵∠MBA=BDE,

=

当点Mx轴上方时, =

解得m=﹣3(舍弃),

M(﹣),

当点Mx轴下方时, =

解得m=﹣m=3(舍弃),

∴点M(﹣,﹣),

综上所述,满足条件的点M坐标(﹣)或(﹣,﹣);

②如图中,∵MNx轴,

∴点M、N关于抛物线的对称轴对称,

∵四边形MPNQ是正方形,

∴点P是抛物线的对称轴与x轴的交点,即OP=1,

易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,

当﹣m2+2m+3=1﹣m时,解得m=

当﹣m2+2m+3=m﹣1时,解得m=

∴满足条件的m的值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA, CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

1)在这次调查中共调查了多少名学生?

2)补充频数分布直方图;

3)求表示户外活动时间 1小时的扇形圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC中,BMABC内部的一条射线,且,点A关于BM的对称点为D,连接ADBDCD,其中ADCD的延长线分别交射线BM于点EP

(1)依题意补全图形;

(2)若ABM ,求BDC 的大小(用含的式子表示);

(3)用等式表示线段PBPCPE之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角△ABC,∠ABC45°,ADBCDBEACE,交ADF

1)求证:△BDF≌△ADC

2)若BD4DC3,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格,某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示。

各等级学生平均分统计表

等级

优秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等级学生人数分布扇形统计图

1)扇形统计图中不及格所占的百分比是  ;

2)计算所抽取的学生的测试成绩的平均分;

3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,点E是弧AC上的一个动点,过点E的切线与AD交于点M.与CD交于点N

1)求证:∠MBN45°

2)设AMxCNy,求y关于x的函数关系式;

3)设正方形的对角线ACBMPBNQ,如果APmCQn,求mn之间满足的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知三角形纸片△ABC和△DEF重合在一起,ABACDEDF,△ABC≌△DEF.数学实验课上,张老师让同学们用这两张纸片进行如下操作:

(1)(操作探究1)保持△ABC不动,将△DEF沿射线BC方向平移至图2所示位置,通过度量发现BECE12,则SCGESCAB   

(2)(操作探究2)保持△ABC不动,将△DEF通过一次全等变换(平移、旋转或翻折后和△ABC拼成以BC为一条对角线的菱形,请用语言描述你的全等变换过程.

(3)(操作探究3)将两个三角形按图3所示放置:点C与点F重合,ABDE.保持△ABC不动,将△DEF沿射线DA方向平移.若AB13BC10,设△DEF平移的距离为m

m0时,连接ADBE,判断四边形ABED的形状并说明理由;

在平移的过程中,四边形ABED能否成为正方形?若能,请求出m的值;若不能,请说明理由.

查看答案和解析>>

同步练习册答案