精英家教网 > 初中数学 > 题目详情

【题目】如图,EF为△ABC的中位线,△AEF的面积为6,则四边形EBCF的面积为

【答案】18
【解析】解:∵E、F分别是AB,AC的中点,

∴EF∥BC,

∴△AEF∽△ABC,

=( 2=

∵△AEF的面积为6,

∴△ABC的面积是24,

∴四边形EBCF的面积是24﹣6=18,

所以答案是:18.

【考点精析】根据题目的已知条件,利用三角形中位线定理和相似三角形的判定与性质的相关知识可以得到问题的答案,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东西会逐渐被遗忘.教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列问题:

1)观察图象,后,记忆保持量约为 后,记忆保持量约为

2)图中的点表示的意义是什么?

点表示的意义是

在以下哪个时间段内遗忘的速度最快?填序号

02;②24; ③46; ④68

3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当天课堂上所记的课堂笔记进行复习,据调查这样一天后记忆量能保持98%,如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校跳绳活动月即将开始,其中有一项为跳绳比赛,体育组为了了解七年级学生的训练情况,随机抽取了七年级部分学生进行1分钟跳绳测试,并将这些学生的测试成绩(1分钟的个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为级,90~120范围内的记为级,120~150范围内的记为级,150~180范围内的记为级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中级对应的圆心角为,请根据图中的信息解答下列问题:

1)在扇形统计图中,求级所占百分比;

2)在这次测试中,求一共抽取学生的人数,并补全频数分布直方图;

3)在(2)中的基础上,在扇形统计图中,求级对应的圆心角的度数.

    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为( )
A.没有实数根
B.有一个实数根
C.有两个不相等的实数根
D.有两个相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,过点A(﹣ ,0)的两条直线分别交y轴于B,C两点,且B,C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根.

(1)求线段BC的长度;
(2)试问:直线AC与直线AB是否垂直?请说明理由;
(3)若点D在直线AC上,且DB=DC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A,B分别在反比例函数y= (x>0),y= (x>0)的图象上且OA⊥OB,则tanB为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.

使用次数

0

1

2

3

4

5

人数

11

15

23

28

18

5

(1)这天部分出行学生使用共享单车次数的中位数是   ,众数是   ,该中位数的意义是   

(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)

(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=( )

A.60°
B.65°
C.72°
D.75°

查看答案和解析>>

同步练习册答案