【题目】有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.
(1)求被剪掉阴影部分的面积:
(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
我们可以通过以下方法求代数式的最小值.
,
∵≥0,
∴当时, 有最小值.
请根据上述方法,解答下列问题:
(1),则的值是______;
(2)求证:无论x取何值,代数式的值都是正数;
(3)若代数式的最小值为2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的顶点A、C、D都在⊙O上,AB与⊙O相切于点A,BC与⊙O交于点E,设∠OCD=α,∠BAD=β.
(1)求证:AB=AE;
(2)试探究α与β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D在AB上,以BD为直径的⊙O切AC于点E,连接DE并延长,交BC的延长线于点F.
(1)求证:△BDF是等边三角形;
(2)连接AF、DC,若BC=3,写出求四边形AFCD面积的思路.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值.,并指出此时x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是弧EB的中点,则下列结论:
①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一条直线过点,且与抛物线交于A、B两点,其中点A的横坐标是-2.
⑴求这条直线的函数关系式及点B的坐标 ;
⑵在轴上是否存在点C,使得ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;
⑶.过线段AB上一点P,作PM∥轴,交抛物线于点M,点M在第一象限;点,当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市正在进行商业街改造,商业街起点在古民居P的南偏西60°方向上的A处,现已改造至古民居P南偏西30°方向上的B处,A与B相距150m,且B在A的正东方向.为不破坏古民居的风貌,按照有关规定,在古民居周围100m以内不得修建现代化商业街.若工程队继续向正东方向修建200m商业街到C处,则对于从B到C的商业街改造是否违反有关规定?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O经过点B,D,E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.
(1)证明:直线AC是⊙O的切线.
(2)当AE=4,AD=2时,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com