精英家教网 > 初中数学 > 题目详情
13.某市一中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:
(1)C等级对应扇形的圆心角为144度;
(2)学校欲从获A等级的学生中随机选取2人参加市演讲比赛,请利用列表法或树形图法求获A等级的小明参加市演讲比赛的概率.(假设小明用A1表示,其他三人分别用A2、A3、A4表示)

分析 (1)先利用D等级的人数除以它占的百分比得到调查的总人数,然后用360°乘以C等级所占的百分比即可得到C等级对应扇形的圆心角的度数;
(2)A等级的人数为4人,假设小明用A表示,其他三人分别用B、C、D表示,利用画树状图展示所有12种等可能的结果数,再找出小明参加市演讲比赛的结果数,然后根据概率公式求解.

解答 解:(1)12÷30%=40,即调查的总人数为40人,
所以C等级对应扇形的圆心角=360°×$\frac{16}{40}$=144°,
故答案为144;
(2)A等级的人数为4人,假设小明用A表示,其他三人分别用B、C、D表示,
画树状图为:

共有12种等可能的结果数,小明参加市演讲比赛的结果数为6,
所以小明参加市演讲比赛的概率=$\frac{6}{12}$=$\frac{1}{2}$.

点评 本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线的顶点在第四象限,顶点到x轴的距离为3,抛物线与x轴交于原点O(0,0)及点A,且OA=4.
(1)求该抛物线的解析式;
(2)若线段OA绕点O顺时针旋转45°到OA′,试判断点A′是否在该抛物线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在平面直角坐标系中,有两条抛物线,它们的对称轴相同,则下列关系中,不正确的是(  )
A.m=kB.m=hC.k>nD.h<0,n>0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为(  )
A.50°B.60°C.70°D.80°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.完全相同的甲、乙两个水槽,分别有一个进水管和若干个出水管,甲槽有12升水,由于工作人员马虎,他关闭进水管和出水管时,有一个出水管未关,水以每分钟0.12升的速度滴下,乙槽原来没有水,同时开放进水管和一个出水管一段时间后,关闭进水管,又打开a个出水管,存水量y(升)与时x(分)之间的函数图象如图所示,请结合图象回答问题:
(1)何时两个水槽中存水量相同?
(2)进水管每分钟的流速是多少?
(3)求出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知反比例函数y=$\frac{k}{x}$的图象与一次函数y=mx+b的图象相交于两点A(1,3),B(n,-1).
(1)分别求出反比例函数与一次函数的函数关系式;
(2)若一次函数与y轴相交于点C,求△BOC的面积;
(3)观察图象请直接写出:一次函数的值大于反比例函数的值的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,△ABC绕点O按逆时针方向旋转后,顶点A旋转到了点D.
(1)指出这一旋转的旋转角.
(2)画出旋转后的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图.∠1+∠2+∠3+∠4+∠5+∠6的值为720°(分割成三角形).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.
(1)求证:BE=CE;
(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,EB平分∠ABC,求图中阴影部分(扇形)的面积.

查看答案和解析>>

同步练习册答案