精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
(1)求证:BF=CD;
(2)连接BE,若BE⊥AF,∠BFA=60°,BE=2 ,求平行四边形ABCD的周长.

【答案】
(1)解:证明:∵四边形ABCD为平行四边形,

∴AB=CD,AD∥BC,

∴∠FAD=∠AFB,

又∵AF平分∠BAD,

∴∠FAD=∠FAB.

∴∠AFB=∠FAB.

∴AB=BF,

∴BF=CD


(2)解:∵由(1)知:AB=BF,

又∵∠BFA=60°,

∴△ABF为等边三角形,

∴AF=BF=AB,∠ABE=60°,

∵BE⊥AF,

∴点E是AF的中点.

∵在Rt△BEF中,∠BFA=60°,BE=

∴EF=2,BF=4,

∴AB=BF=4,

∵四边形BACD是平行四边形,

∴AB=CD,AD=BC,AB∥CD,

∴∠DCF=∠ABC=60°=∠F,

∴CE=EF,

∴△ECF是等边三角形,

∴CE=EF=CF=2,

∴BC=4﹣2=2,

∴平行四边形ABCD的周长为2+2+4+4=12


【解析】(1.)根据平行四边形的性质得出AB=CD,AD∥BC,求出∠FAD=∠AFB,根据角平分线定义得出∠FAD=∠FAB,求出∠AFB=∠FAB,即可得出答案; (2.)求出△ABF为等边三角形,根据等边三角形的性质得出AF=BF=AB,∠ABE=60°,在Rt△BEF中,∠BFA=60°,BE= ,解直角三角形求出EF=2,BF=4,AB=BF=4,BC=AD=2,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ECD的中点,连接AE、BE,BEAE,延长AEBC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+2m﹣1(m≠0)与平行于x轴的一条直线交于A,B两点.
(1)求抛物线的对称轴;
(2)如果点A的坐标是(﹣1,﹣2),求点B的坐标;
(3)抛物线的对称轴交直线AB于点C,如果直线AB与y轴交点的纵坐标为﹣1,且抛物线顶点D到点C的距离大于2,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)1

(2)10x+714x53x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△OAB和△OCD中,OAOBOCOD,∠AOB=∠COD=α,ACBD交于M

(1)如图1,当α=90°时,∠AMD的度数为   °

(2)如图2,当α=60°时,∠AMD的度数为   °

(3)如图3,当△OCDO点任意旋转时,∠AMDα是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由甲、乙两个工程队承包某校校园的绿化工程甲、乙两队单独完成这项工作所需的时间比是3∶2,两队共同施工6天可以完成.

(1)求两队单独完成此项工程各需多少天?

(2)此项工程由甲、乙两队共同施工6天完成任务后学校付给他们4000元报酬若按各自完成的工程量分配这笔钱问甲、乙两队各应得到多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,, ,将沿折叠,使点落在直角边上的点处,设边分别交于点,如果折叠后均为等腰三角形,那么__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图书管理员小张要骑车从学校到教育局,一出校门,遇到了王老师,王老师说:今天有风,而且去时逆风,要吃亏了,小张回答说:去时逆风,回来时顺风,和无风往返一趟所用时间相同”.(顺风速度无风时骑车速度风速逆风速度无风时骑车速度风速

(1)如果学校到教育局的路程是15 km,无风时小张骑自行车的速度是20 km/h,他逆风去教育局所用时间是顺风回学校所用时间的求风速是多少?

(2)如果设从学校到教育局的路程为s千米,无风时骑车速度为v千米/时,风速为a千米/时(va,那么有风往返一趟的时间 无风往返一趟的时间(“>”、“<”“=”),试说明理由.

查看答案和解析>>

同步练习册答案