【题目】问题探究
(1)如图1,△ABC和△DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D,E在同一直线上,连接AD,BD.
①请探究AD与BD之间的位置关系:________;
②若AC=BC=,DC=CE=,则线段AD的长为________;
拓展延伸
(2)如图2,△ABC和△DEC均为直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.将△DCE绕点C在平面内顺时针旋转,设旋转角∠BCD为α(0°≤α<360°),作直线BD,连接AD,当点B,D,E在同一直线上时,画出图形,并求线段AD的长.
【答案】(1)①垂直,②4;(2)作图见解析,或
【解析】
(1)①由“SAS”可证△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;
②过点C作CF⊥AD于点F,由勾股定理可求DF,CF,AF的长,即可求AD的长;
(2)分点D在BC左侧和BC右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.
解:(1)∵△ABC和△DEC均为等腰直角三角形,
∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE
∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,且AC=BC,CE=CD
∴△ACD≌△BCE(SAS)
∴∠ADC=∠BEC=45°
∴∠ADE=∠ADC+∠CDE=90°
∴AD⊥BD
故答案为:垂直
②如图,过点C作CF⊥AD于点F,
∵∠ADC=45°,CF⊥AD,CD=
∴DF=CF=1
∴
∴AD=AF+DF=4
故答案为:4.
(2)①如图:
∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1,
∴AB=2,DE=2,∠ACD=∠BCE, .
∴△ACD∽△BCE.
∴∠ADC=∠E,.
又∵∠CDE+∠E=90°,
∴∠ADC+∠CDE =90°,即∠ADE=90°.
∴AD⊥BE.
设BE=x,则AD=x.
在Rt△ABD中,,
即.
解得(负值舍去).
∴AD=.
②如图,
同①设BE=x,则AD=x.
在Rt△ABD中,,即.
解得(负值舍去).
∴AD=.
综上可得,线段AD的长为
科目:初中数学 来源: 题型:
【题目】央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.
(2)补全条形统计图;
(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大学毕业生小李自主创业,开了一家小商品超市.已知超市中某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价必须低于34元,设每件商品的售价上涨元(为非负整数),每个月的销售利润为元.
(1)求与的函数关系式,并直接写出自变量的取值范围;
(2)利用函数关系式求出每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?
(3)利用函数关系式求出每件商品的售价定为多少元时,每个月的利润恰好是1920元?这时每件商品的利润率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+2与x轴、y轴分别相交于A,B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=4,点A的坐标为(﹣4,0).
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,过点Q作QH⊥x轴于点H,当以点Q,C,H为顶点的三角形与△AOB相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG 并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结 论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中,正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x﹣2的图象与x轴交于点A,与y轴交于点B,点D的坐标为(﹣1,0),二次函数y=ax2+bx+c(a≠0)的图象经过A,B,D三点.
(1)求二次函数的解析式;
(2)如图1,已知点G(1,m)在抛物线上,作射线AG,点H为线段AB上一点,过点H作HE⊥y轴于点E,过点H作HF⊥AG于点F,过点H作HM∥y轴交AG于点P,交抛物线于点M,当HEHF的值最大时,求HM的长;
(3)在(2)的条件下,连接BM,若点N为抛物线上一点,且满足∠BMN=∠BAO,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com