【题目】某商场在试销一种进价为20元/件的商品时,每天不断调整该商品的售价以期获利更多,经过20天的试销发现,第一天销售量为78件,以后每天销售量总比前一天减少2件,且第1天至第10天,商品销售单价p与天数x满足:p=30+x;第11天至第20天,商品销售单价p与天数x满足:p=20+.
(1)写出销售量y(件)与天数x(天)的函数关系式;
(2)求商场销售该商品的20天里每天获得的利润w(元)与x的函数关系式;
(3)该商品试制期间,第几天销售该商品获得的利润最大?最大利润是多少?
【答案】(1)y=﹣2x+80;(2)w1=﹣2x2+60x+800,w2=﹣220;(3)第10天销售该商品获得的利润最大,最大利润是1200元.
【解析】
(1)设P与x之间的函数关系式为y=kx+b,将(1,78),(2,76)代入关系式就可以求出结论;
(2)设前10天每天的利润为w1(元),后10天每天的利润为w2(元),由日销售利润=每天的销售量×每公斤的利润就可以分别表示出w1与w2与x的关系;
(3)当1≤x≤10,得到当x=10时,w1有最大值=1200元,当11≤x≤20,当x=11时,w2有最大值=580元,比较即可得到结论.
解:(1)设y与x之间的函数关系式为y=kx+b,由题意,得,解得:,
∴销售量y(件)与天数x(天)的函数关系式为:y=﹣2x+80;
(2)设前10天每天的利润为w1(元),后10天每天的利润为w2(元),
由题意,得
w1=(p﹣20)y
=(30+x﹣20)(﹣2x+80),
=﹣2x2+60x+800,
w2=(p﹣20)y
,
=﹣220;
(3)当1≤x≤10,w1=﹣2x2+60x+800=﹣2(x﹣15)2+1250,
∴当x=10时,w1有最大值=1200元,
当,,
∴当x=11时,w2有最大值=580元,
∵1200>580,
∴第10天销售该商品获得的利润最大,最大利润是1200元.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知抛物线与x轴交于点A(-1,0)和点B,与y轴交于点C(0,-2).
(1)求该抛物线的表达式,并写出其对称轴
(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标
(3)点D为该抛物线的顶点,设点P(t, 0),且t>3,如果△BDP和△CDP的面积相等,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(m,y1)、B(m+1,y2)、C(m-3,y3)在反比例函数的图象上,则y1、y2、y3的大小关系不可能是( )
A.y3<y2<y1B.y2<y3<y1C.y3<y1<y2D.y1<y2<y3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以AB为直径作圆交AC、BC于点D、E两点,AF切⊙O于点A,点D是AC中点.
(1)求证:AB=BC;
(2)若,CF=,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有四张背面完全相同的纸牌,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如(图1),已知经过原点的抛物线y=ax2+bx与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)
(1)求抛物线的解析式;
(2)在直线OB下方的抛物线上有一点C,点C到直线OB的距离为,求点C的坐标;
(3)如(图2),若点M在抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水产基地种植某种食用海藻,从三月一日起的30周内,它的市场价格与上市时间的关系用图①线段表示;它的平均亩产量与时间的关系用图②线段表示;它的每亩平均成本与上市时间的关系用图③抛物线表示.
(1)写出图①、图②所表示的函数关系式;
(2)若市场价×亩产量-亩平均成本 = 每亩总利润,问哪一周上市的海藻利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连接CF并延长交AB于点M,MN⊥CM交射线AD于点N.
(1)如图1,当点F为BE中点时,求证:AM=CE;
(2)如图2,若=3时,求的值;
(3)若=n(n≥3)时,请直接写出的值.(用含n的代数式表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com