精英家教网 > 初中数学 > 题目详情

【题目】图①、图②均是5×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点AEF均在格点上.在图①、图②中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.

1)在图①中画一个正方形ABCD,使其面积为5

2)在图②中画一个等腰△EFG,使EF为其底边.

【答案】1)见解析;(2)见解析

【解析】

1)根据1×2格对角线为,以为边画正方形面积即为5

2EF是以1×2格对角线为腰的等腰三角形的底边.

如图所示:

1)如图①∵是5×6的正方形网格,

AB==

S正方形ABCD=5

∴图①中正方形ABCD即为所求作的图形,

2)如图②,∵EG=FG=

∴图②中等腰三角形EFG即为所求作的图形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图所示,点为矩形的中点,在矩形的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员从点出发,沿着的路线匀速行进,到达点.设运动员的运动时间为,到监测点的距离为.现有的函数关系的图象大致如图所示,则这一信息的来源是( ).

A. 监测点 B. 监测点 C. 监测点 D. 监测点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)已知EF分别为正方形ABCD的边BCCD上的点,AFDE相交于点G,当EF分别为边BCCD的中点时,有:①AF=DE②AF⊥DE成立.

试探究下列问题:

1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论是否仍然成立?(请直接回答成立不成立),不需要证明)

2)如图2,若点EF分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;

3)如图3,在(2)的基础上,连接AEBF,若点MNPQ分别为AEEFFDAD的中点,请判断四边形MNPQ矩形、菱形、正方形中的哪一种,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在楼AB与楼CD之间有一旗杆EF,从AB顶部A点处经过旗杆顶部E点恰好看到楼CD的底部D点,且俯角为45°,从楼CD顶部C点处经过旗杆顶部E点恰好看到楼ABG点,BG=1米,且俯角为30°,已知楼AB20米,求旗杆EF的高度.(结果精确到1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初二开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:

1)根据图示填写下表:

班级

中位数(分)

众数(分)

平均数(分)

爱国班

85

求知班

100

85

2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?

3)已知爱国班复赛成绩的方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“表格”为初三(1)班全部 43 名同学某次数学测验成绩的统计结果,则下列说法正确的是(  )

成绩(分)

 70

 80

 90

 男生(人)

 5

 10

 7

 女生(人)

 4

 13

 4

A. 男生的平均成绩小于女生的平均成绩 B. 男生成绩的中位数大于女生成绩的中位数

C. 男生的平均成绩大于女生的平均成绩 D. 男生成绩的中位数小于女生成绩的中位数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以点为圆心,的长为半径画弧,与边交于点,将 绕点旋转后点与点恰好重合,则图中阴影部分的面积为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AH是圆O的直径,AE平分FAH,交O于点E,过点E的直线FGAF,垂足为F,B为直径OH上一点,点E、F分别在矩形ABCD的边BC和CD上.

(1)求证:直线FG是O的切线;

(2)若AD=8,EB=5,求O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图,其对称轴x=﹣1,给出下列结果①b2>4acabc>02a+b=0a+b+c>0a﹣b+c<0,则正确的结论的个数为(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案