【题目】如图,△ABC中,AB=AC,且∠ABC=60°,D为△ABC内一点 ,且DA=DB,E为△ABC外一点,BE=AB,且∠EBD=∠CBD,连DE,CE. 下列结论:①∠DAC=∠DBC;②BE⊥AC ;③∠DEB=30°. 其中正确的是( )
A.①...B.①③...C.② ...D.①②③
【答案】B
【解析】
连接DC,证,再证,得出;其它两个条件运用假设成立推出答案即可.
解:证明:连接DC,
∵△ABC是等边三角形,
∴AB=BC=AC,∠ACB=60°,
∵DB=DA,DC=DC,
在△ACD与△BCD中, ,
∴△ACD≌△BCD (SSS),
由此得出结论①正确;
∴∠BCD=∠ACD=
∵BE=AB,
∴BE=BC,
∵∠DBE=∠DBC,BD=BD,
在△BED与△BCD中,,
∴△BED≌△BCD (SAS),
∴∠DEB=∠BCD=30°.
由此得出结论③正确;
∵EC∥AD,
∴∠DAC=∠ECA,
∵∠DBE=∠DBC,∠DAC=∠DBC,
∴设∠ECA=∠DBC=∠DBE=∠1,
∵BE=BA,
∴BE=BC,
∴∠BCE=∠BEC=60°+∠1,
在△BCE中三角和为180°,
∴2∠1+2(60°+∠1)=180°
∴∠1=15°,
∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.
因此若要结论②正确,需要添加条件EC∥AD.
故答案为:B.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(10,0),B(10,6),BC⊥y轴,垂足为C,点D在线段BC上,且AD=AO.
(1)试说明:DO平分∠CDA;
(2)求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数,则该函数图象的开口________(填“向上”或“向下”);若点在该二次函数的图象上,则点在第二象限内为________(填“随机”“必然”或“不可能”)事件.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)在如图所示的网格平面内作出平面直角坐标系,标注原点以及x轴、y轴;
(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;
(3)点P是x轴上的动点,在图中找出使△A′BP周长最小时的点P,直接写出点P的坐标是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称.
(1)求△ABC的面积;
(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;
(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一根竹竿长米,先像靠墙放置,与水平夹角为,为了减少占地空间,现将竹竿像放置,与水平夹角为,则竹竿让出多少水平空间( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】()如图①已知四边形中,,BC=b,,求:
①对角线长度的最大值;
②四边形的最大面积;(用含,的代数式表示)
()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com