【题目】如图,在平面直角坐标系中,A(2,0),B ( 2,0),C为 y 轴负半轴上一点,D是第四象限内一动点,且始终有BDA 2ACO 成立,过C 点作CE BD 于点 E .
(1)求证:DAC DBC ;
(2)若点 F 在 AD 的延长线上,求证:CD 平分BDF ;
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据轴对称的性质可知△ABC是等腰三角形,由三线合一可得∠ACB=2∠ACO,从而∠ACB=BDA,然后利用三角形的内角和即可得到结论;
(2)过C作CN⊥AF于N,根据AAS证明△BCE≌△ACN,可证CE=CN,然后根据角平分线的判定方法可得结论.
证明:(1)∵A(2,0),B ( 2,0),
∴OA=OB,
∴∠ACO=∠BCO,
∴ACB 2ACO,
∵BDA 2ACO,
∴∠ACB=BDA,
∵∠DAC =180°-∠BDA-∠AGD,
∴∠DBC =180°-∠ACB-∠BGC,
∴DAC DBC ;
(2)过C作CN⊥AF于N,
∴∠BEC=∠CED=∠CND=90°;
在△BCE与△ACN中,
,
∴△BCE≌△ACN,
∴CE=CN,
∴CD是∠BDF的角平分线;
科目:初中数学 来源: 题型:
【题目】如图,抛物线与两坐标轴相交于点,是抛物线的顶点, 是线段的中点.
(1)求抛物线的解析式,并写出点的坐标;
(2) 是抛物线上的动点;
①当时,求的面积的最大值;
②当时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC,求证∠1=∠2.以下是推理过程,请你填空:
解:∵CD⊥AB,FG⊥AB
∴∠CDB=∠FGB=90°( 垂直定义)
∴ ∥FG( )
∴ =∠3 ( )
又∵DE∥BC ( 已知 )
∴∠ =∠3 ( 两直线平行,内错角相等 )
∴∠1=∠2 ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的表和图(如图).
组别 | 个人年消费金额x/元 | 频数(人数) | 频率 |
A | x≤2 000 | 18 | 0.15 |
B | 2 000<x≤4 000 | a | b |
C | 4 000<x≤6 000 | ||
D | 6 000<x≤8 000 | 24 | 0.20 |
E | x>8 000 | 12 | 0.10 |
合计 | c | 1.00 |
根据以上信息回答下列问题:
(1)a=________,b=________,c=________,并将条形统计图补充完整;
(2)在这次调查中,个人年消费金额的中位数出现在________组;
(3)若这个企业有3 000名员工,请你估计个人旅游年消费金额在6 000元以上的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度秒的速度绕正方形作逆时针运动,则它们第2019次相遇在( )
A. 点AB. 点BC. 点CD. 点D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.
(1)甲、乙两车单独完成任务分别需要多少天?
(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种租车方案中,哪一种租金最少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是( )
A.①②B.②③C.①②④D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店在今年2月底以每袋23元的成本价收购一批农产品准备向外销售,当此农产品售价为每袋36元时,3月份销售125袋,4、5月份该农产品十分畅销,销售量持续走高.在售价不变的基础上,5月份的销售量达到180袋.设4、5这两个月销售量的月平均增长率不变.
(1)求4、5这两个月销售量的月平均增长率;
(2)6月份起,该商店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/袋,销量就增加4袋,当农产品每袋降价多少元时,该商店6月份获利1920元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学领域有些研究成果曾位居世界前列,其中“杨辉三角”就是一例.南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用图中的三角形解释二项和的乘方规律.杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,这个三角形给出了(a+b)n(n=1,2,3,4,5)的展开式(按a的次数由大到小的顺序)的系数规律.例如,此三角形中第3行的3个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数:第4行的4个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中各项的系数,等等.利用上面呈现的规律填空:(a+b)6=a6+6a5b+________+20a3b3+15a2b4+ ________+b6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com